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ABSTRACT 

A prototype interface was developed to support military practitioners with 

enhanced levels of situation awareness and better decision making as they conduct 

command and control activities during tactical operations.  A laboratory experiment was 

conducted to evaluate the capability of this interface’s cognitive systems engineering and 

ecological interface design principles to support critical activities (i.e., assess anticipated 

enemy actions on friendly force operations).  Qualitative tactical simulations and an 

alternative interface (an experimental version of an existing U.S. Army interface) were 

developed.  Participants were blocked against one interface and provided estimates of 

perceived levels of cognitive workload while collecting, integrating, and reporting 

various forms of friendly and enemy force information during two realistic tactical 

scenarios.  The results suggested that the prototype interface produced significantly better 

performance in six out of seven statistical comparisons examined.  The cognitive systems 

engineering and ecological interface design strategy was very effective in this 

experimental context.  The potential for this design to be useful for other complex work 

domains is explored.  Actual or potential applications of this study include both specific 

interface design strategies for military command and control and general interface design 

principles for civil transportation work domains. 
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EXECUTIVE SUMMARY 

Information is vital for success during war.  Since the turn of the twentieth 

century, information technology has continued to advance at an exponential rate, 

enabling commanders to take advantage of the speed, range, and lethality of modern 

weaponry.  Information technology advancements also make warfare more complex.  

Since the inception of the Force XXI modernization program, the U.S. Army has fielded 

numerous interfaces to leverage the capabilities of digital information systems during the 

command and control of tactical operations.  In reality, many of these information 

technologies have given little consideration to the role of the human in the design or 

implementation of the systems.  This failure to recognize humans as the critical nodes 

within information system designs ultimately degrade total system performance and 

further complicate command.   

Ultimately, success in enhancing decision-maker performance relies on the 

integration of human cognition and technological capability.  This reliance on both 

human and machine agents strongly suggests a Human Systems Integration approach, 

which strives to implement people as the key elements within the “system of systems” 

architecture by assisting in system designs that support human limitations and enhance 

human strengths.  

Information complexity in itself is not a problem, given meaningful information is 

presented in a coherent and structured manner.  The essential notion being that in order 

for information system technologies to improve total system performance and 

effectiveness, information must be constructed into representations that exploit the 

inherent pattern-recognition capabilities of the human, while also decreasing reliance on 

limited-capacity resources.  Accordingly, this study explores the effectiveness of a 

prototype interface (RAPTOR) designed to be used in command and control during 

tactical operations.  The extent to which warfighter performance is enhanced by the 

cognitive systems engineering approach and ecological interface design principles used to 

develop RAPTOR are made explicit.   



 xviii

During this study, a laboratory experiment was conducted to evaluate the 

capability of the interface to support military practitioners as they conducted critical 

command and control activities (i.e., assess anticipated enemy actions on friendly force 

operations) during tactical operations.  U.S. Army officers with previous combat 

experience in Operation Iraqi Freedom and/or Operation Enduring Freedom served as 

participants.  Two qualitative tactical simulations and an alternative interface (an 

experimental version of an existing U.S. Army interface) were developed.  Participants 

were blocked against one interface and provided estimates of perceived cognitive 

workload while collecting, integrating, and reporting various forms of friendly and 

enemy force information during the tactical simulations.   

The results suggested that the prototype interface produced significantly better 

performance in six out of seven statistical comparisons examined.  The cognitive systems 

engineering and ecological interface design strategy was very effective in this 

experimental context.  The results also demonstrate the potential for this design strategy 

to be useful for other complex work domains.  Actual or potential applications of this 

study include both specific interface design strategies for military command and control 

and general interface design principles for civil transportation work domains.  

In conclusion, researchers believe results from this study achieved the primary 

purpose of assisting the U.S. Army in its efforts to develop advanced C2 interfaces that 

account for human capabilities and limitations. 
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I. INTRODUCTION 

Information is vital for success during war.  According to Shapiro (1999), this 

truism dates back at least to the ancient Chinese writings of Sun Tzu.  Accurate 

information on friendly and enemy activities reduces what Clausewitz called the “fog of 

war” and facilitates the rapid defeat of enemy forces on the battlefield.  Since the turn of 

the twentieth century, information technology has continued to advance at an exponential 

rate, enabling commanders to take advantage of the speed, range, and lethality of modern 

weaponry.  Bennett, Posey, and Shattuck (2008) suggest military applications continue to 

provide both the impetus for technological change and a testing ground for  

these applications. 

Information technology advancements also make warfare more complex.  Since 

the inception of the Force XXI modernization program, the United States Army has 

fielded numerous interfaces to leverage the capabilities of digital information systems 

(INFOSYS) during the command and control (C2) of tactical operations.  Many of these 

interfaces purport to enhance situational awareness (SA) by allowing the commander to 

access countless gigabytes of near real-time information.  However, the sheer volume of 

information these sophisticated technologies provide often overwhelms the commander’s 

ability to comprehend their meaning.  This natural phenomenon of information overload 

degrades SA and increases the fog of war.  As Hall (2000) asserts, many more years of 

development and experimentation are required before computers can meet all the 

conditions necessary to control modern forces on the battlefield.  The goal of this thesis is 

to assist the U.S. Army in its efforts to develop and incorporate interfaces that provide 

effective support to military practitioners as they cope with the inherent complexities  

of C2. 

A. CHARACTERISTICS OF THE C2 DOMAIN 

According to U.S. Army Field Manual (FM) 6.0 (2003), through command and 

control, the commander initiates the actions of, influences, and synchronizes the elements 

of combat power to impose his will on the situation and defeat the enemy.  The critical 
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role C2 plays in success on the battlefield is not a new concept.  From the ancient 

battlegrounds of Mesopotamia to the asymmetric combat zones of modern-day 

Afghanistan and Iraq, military commanders have practiced C2 throughout the history of 

warfare.  While the size and scope of military operations has transformed the theory of C2 

over the years, mission accomplishment has continued to remain its goal. 

During tactical operations, C2 is complex and dynamic.  The fluid nature and 

harsh conditions of combat create friction, which makes performing even simple tasks 

extremely difficult (Kemmerer, 2008).  Friction stems from multiple sources, but is 

routinely characterized by time-pressure, high personal stakes (risk), and uncertainty 

(Lipshitz, Klein, Orasanu, & Salas, 2001).  Time-pressure occurs because events during 

tactical operations are extremely fast-paced.  It is impossible to eliminate risk from 

combat operations since the loss of life is always a possibility.  Uncertainty is inevitable 

due to the ways in which data are observed, measured, and reported.  Further, the enemy 

is actively involved in deception and misdirection.  The scope, complexity, and severity 

of the challenges within this domain of application are perhaps unprecedented (Bennett  

et al., 2008). 

The complexity and uncertainty of modern warfare makes it impossible for 

commanders to effectively execute C2 in isolation.  Commanders require support from 

staff personnel to coordinate and synchronize finite resources such as people, equipment, 

technology, and logistics to achieve mission-related goals.  Commanders also need help 

to determine the effects numerous interrelated factors (e.g., enemy forces, terrain, 

weather, time, etc.) will have on these resources as they execute tasks.  At every echelon 

of command, each commander has a C2 system to provide that support (Department of the 

Army, 2003). 

According to FM 6-0 (2003), the C2 system strives to reduce uncertainty to 

manageable levels by enabling commanders to see themselves, the enemy, and the 

terrain.  C2 is part of the Battlefield Operating System (BOS), and integrates functions 

from the other six BOSs to accomplish the mission.  The other BOSs include: 

 Intelligence System 

 Maneuver System 
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 Fire Support System 

 Air Defense System 

 Mobility/Counter-mobility/Survivability System 

 Combat Service Support System 

 C2 consists of two components:  the commander and his C2 system.  Commanders 

use their C2 systems to exercise C2 over their forces to accomplish missions (Department 

of the Army, 2003).  The commander, while having overall responsibility for C2, must 

understand the situation before making decisions.  Staff personnel assist the commander 

by collecting and processing data into relevant information (RI).  Through RI, the 

commander gains understanding.  The commander then uses his understanding to 

determine plausible courses of action (COA), and to issue timely directives. 

Due to friction, uncertainty will always exist regardless of how well the C2 system 

operates.  Commanders and staffs must use information-focused and action-focused 

solutions to identify and reduce uncertainty (Department of the Army, 2003).   

Action-focused solutions consist of experience, training, and standard operating 

procedures (SOP).  Information-focused solutions increasingly rely on computer-assisted 

information distribution, integration, and display processes.  Thus, today’s military 

practitioner requires an advanced C2 interface that assists in seeing and understanding the 

entire battlefield. 

B. THE RAPTOR INTERFACE 

RAPTOR (Representation Aiding Portrayal of Tactical Operations Resources) is a 

prototype interface designed to be used in C2 during tactical operations (see Figure 1).  

This study will examine if warfighter performance is enhanced by the cognitive systems 

engineering (CSE) approach and ecological interface design (EID) principles used to 

develop RAPTOR.  The intent behind the CSE approach to RAPTOR’s design is to 

provide the user with robust cognitive support to increase performance during C2 efforts.  

Thus, the major goals for the design and implementation of RAPTOR are to facilitate 

better decision making and enhance operator SA by increasing understanding of  

the battlespace. 
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Figure 1.   RAPTOR Interface (After:  Bennett, Posey, & Shattuck, 2008). 

Ultimately, the goal of interface design must be considered as the provision of 

effective decision and problem-solving support (Bennett et al., 2008).  With this goal in 

mind, the extent to which an interface enhances operator SA and closes the “information 

gap” will determine the benefit of any interface to a tactical C2 system (Endsley & 

Garland, 2000).  Therefore, in the context of decision making, understanding, and SA, the 

degree to which the interface design improves human and machine interactions will 

determine total system performance.  The more intuitive the system is to operate, the 

faster users can effectively incorporate the system into the work domain.  Accordingly, 

the design principles and techniques used to develop RAPTOR will ultimately assist the 

U.S. Army in its efforts to incorporate advanced interfaces that account for human 

capabilities and limitations in the U.S. Army’s Battle Command System (ABCS). 

A controlled laboratory experiment was the primary vehicle used to assess 

military decision makers’ performance while performing critical battlefield activities 

(e.g., gain and analyze critical knowledge on the effects of terrain; assess anticipated 

enemy actions on friendly force operations).  Previous empirical examinations comparing 

RAPTOR to C2 interfaces currently being utilized by the United States Army have 

already demonstrated RAPTOR’s potential to provide superior support to military 
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practitioners as they execute C2 activities.  This study advances the development of 

RAPTOR by identifying areas for improvement in the interface design.  This study also 

builds on work previously conducted, and further validates the ability of the interface to 

increase performance as users deal with uncertainty and novel situations in dynamic and 

fluid environments.  Though the current version of RAPTOR was inspired by the 

complexities in C2, the results of this study could potentially provide warfighters with a 

robust interface capable of assisting and supporting a variety of complicated tasks across 

a broad range of complex work domains. 

In summary, the goal of this thesis was to demonstrate how effectively RAPTOR 

employed CSE and EID constructs to increase the military practitioner’s understanding of 

the battlespace and to enhance SA.  Though no interface will result in complete 

understanding or perfect SA, an interface designed to support the cognitive capabilities 

and limitations of the commander may lead to a significant tactical edge over threat 

forces (Libicki & Johnson, 1996). 

C. HUMAN SYSTEMS INTEGRATION (HSI) 

This study explores the effectiveness of RAPTOR in the C2 system from the 

perspective of HSI.  According to the principles of HSI, human considerations must be 

viewed as a priority in systems design to reduce life-cycle costs and improve total system 

performance (Miller & Shattuck, 2008).  HSI strives to implement the human as the key 

element in the “system of systems” architecture by assisting in system designs that 

support human limitations and enhance human strengths.  In order to accomplish this 

goal, HSI practitioners focus on inherent trade-offs within each of the following  

HSI domains: 

 Human Factors Engineering 

 Manpower 

 Personnel 

 Training 

 Human Survivability 

 Health Hazards 
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 System Safety 

 Habitability 

Considerations of human-centered design trade-offs early in the acquisition 

process promote system effectiveness, safety, and cost savings throughout the system life 

cycle (Miller & Shattuck, 2008).  Further explanation of the domains, and the specific 

trade-offs within each domain, can be found in Department of Defense Instruction 

5000.2, or Handbook of Human Systems Integration (Booher, 2003). 

For the purpose of this study, exploration on RAPTOR’s potential to assist and 

reinforce the military commander’s ability to actively execute all aspects of C2 will focus 

on the HSI domains of human factors engineering, training, and manpower.  This study 

hopes to highlight the extent to which RAPTOR improves human performance, and to 

determine how well the interface and the human interact.  Essentially, the level of 

achieved human-computer interaction will drive the time, cost, and types of training 

required for users to successfully operate the interface.  The more intuitive RAPTOR is to 

operate, the faster users can effectively incorporate the interface into the C2 system.  The 

results could potentially reduce the manpower required to assist commanders at 

conducting C2. 

D. RESEARCH QUESTIONS 

The role of sophisticated computer technology in the C2 system raises several 

important questions.  The following questions set this study’s foundation, and also 

provide a basis for future studies aimed at designing interfaces capable of assisting and 

supporting a variety of complicated tasks across a broad range of complex work domains.  

When researching the problem from an HSI perspective, one must focus on symbiotic 

relationships that exist between the human and the machine. 

 To what extent does sophisticated INFOSYS technology facilitate C2?  To 

what extent does sophisticated technology impede C2? 

 How do humans transform data into information?  How do these processes 

enable military commanders to understand the battlespace? 
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 How do interfaces assist humans with the cognitive integration of 

information? 

 How are perception and SA intertwined?  How, at all, does SA affect 

decision making? 

 How does an interface design affect the man and machine symbiosis? 

 To what extent does RAPTOR increase warfighter performance during C2 

of tactical operations? 

E. RESEARCH OBJECTIVES 

The ultimate objective of this thesis is to facilitate interface designs that enhance 

total system performance.  The specific objectives for the study are: 

 Develop a methodology to assess how interfaces assist humans to achieve 

enhanced levels of SA and improved decision making. 

 Develop tactical scenarios for modeling and simulation. 

 Determine the extent to which warfighter performance is enhanced by 

RAPTOR’s CSE and EID design approach. 

 Emphasize the importance of HSI in exploring the role of sophisticated 

computer technologies in the C2 system. 

 Provide a clear direction for future studies aimed at incorporating 

advanced interfaces into the U.S. Army’s C2 system. 

F. THESIS ORGANIZATION 

A traditional format will guide the organization of this thesis.  Chapter II provides 

a detailed examination of the CSE framework, and EID theoretical constructs used to 

guide RAPTOR’s interface design.  The process of transforming information into 

individual and shared understanding is further described.  Also, the potential for interface 

designs to enhance military practitioner SA and decision-making are made explicit. 

Chapter III focuses on the empirical evaluation of the RAPTOR interface.  

Detailed descriptions of the methodology (e.g., tactical scenarios, simulations, data  
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collection techniques) used during experimental events are provided.  Additionally, 

lessons learned during the experimental events are documented to assist researchers with 

future replications of the study. 

Chapter IV reports the analysis of data collected during experimental events, 

while Chapter V discusses the implications of the data.  Chapter VI provides conclusions 

and recommendations, and illustrates a “way ahead” for the development and evaluation 

of future interfaces designed for incorporation into complex work domains. 

Appendixes are included to provide more detailed information about the 

experimental process.  Appendix A and B provide copies of the tactical scenario 

operation orders that participants reviewed to prepare themselves for the experimental 

trials.  Appendix C is the demographic survey used to compile participant professional 

data.  Appendix D and E are the post-training tests used to ensure participants retained 

the comprehensive knowledge necessary to advance to the experimental trials.  Appendix 

E is the feedback survey used to elicit specific comments from participants once they 

concluded all experimental trails.  Appendix G illustrates the ad-hoc notes and tables 

Baseline interface participants created during the experimental trials.  



 9

II. LITERATURE REVIEW 

A. C2 DURING INFORMATION AGE WARFARE 

1. The Role of Information Systems Technology in the C2 System 

According to FM 6-0 (2003), the object of INFOSYS technology is to enhance the 

performance of people.  Twentieth century warfare was fought primarily through 

platform-centric operations (PCO) (Department of Defense, 2001).  Radios and 

telephones were the predominate means of communication between the commander and 

his subordinate leaders.  Procedures for receiving and disseminating critical information 

proved extremely cumbersome, which often created confusion and hindered execution.  

As a result, commanders tended to make centralized decisions and commanded by plan, 

which ultimately depended on highly trained and disciplined Soldiers to carry out the 

plan as ordered (Phister, Busch, & Plonisch, 2003). 

Operation Desert Storm exhibited the advantages information age technologies 

can provide to military commanders during combat.  Lessons learned from the  

Iraqi Army’s resounding defeat precipitated the U.S. Army’s modernization process to 

“digitize” their entire INFOSYS structure.  Since 1991, the evolution of INFOSYS 

technologies (e.g., satellite and digital communications) has ushered in network-centric 

operations (NCO) as a new theory of warfare (Department of Defense, 2001).  NCO’s 

concept is based on the use of technology to increase military effectiveness by enabling 

warfighters to rapidly share and utilize battlefield information during tactical operations.  

Simply put, realizing the full potential that advancements in computer, sensor, and 

communications technology can have on reducing the friction of war is sine qua non for 

NCO (Libicki & Johnson, 1996). 

However, due to the speed and nonstop tempo of the modern battlefield, no C2 

system can work without INFOSYS capable of leveraging information-age technologies 

(Department of the Army, 2003).  As a result, numerous automated command, control, 

communications, computer applications, and intelligence (C4I) interfaces have been 

incorporated into the ABCS.  Essentially, ABCS integrates BOS INFOSYS to share near 
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real-time information vertically and horizontally through strategic, operational, and 

tactical commands.  Force XXI Battle Command, Brigade and Below (FBCB2) is the 

Army’s primary C2 interface integrated into the ABCS.  FBCB2 displays graphical 

representations of tactical information, and can be used either on the move or in fixed 

command posts (CP).  This robust network of integrated INFOSYS facilitates the 

commander’s ability to act faster than the enemy, rather than just reacting to  

enemy actions. 

Commanders and staffs who conduct C2 from “digital” tactical operation centers 

(TOC) have the capability to receive, process, share, disseminate, and display 

information must faster than those who conduct C2 from “analog” TOCs.  Computers 

perform many lower order functions faster and more efficiently than humans.  When used 

correctly, the speed and efficiency of computers enable commanders and staff personnel 

to spend their time and mental energy on higher level RI processes (i.e., information of 

importance to the commander and the unit), which leads to reduced uncertainty and better 

decisions.  Conversely, when misused, computers can produce large quantities of 

irrelevant data that hamper the commander’s ability to make timely and  

effective decisions. 

People are the key components within any C2 system.  Even the most advanced 

technology cannot support the C2 system without people (Department of the Army, 

2003).  Satellites and fiber optics can relay vast amounts of data across entire oceans and 

continents.  Unmanned aerial (UAV) and ground vehicles (UGV) can stream countless 

hours of high-resolution video.  Remote sensors, radar, and sonar can transmit multitudes 

of near simultaneous signals.  However, interfaces designed on an incorrect 

understanding of cognition will ultimately degrade, rather than improve, performance 

(Klein, Ross, Moon, Klein, Hoffman, & Hollnagel, 2003).  From an HSI perspective, the 

most important concepts concerning the impact of advanced INFOSYS technology on 

human performance in the C2 system lie in the cognitive, information, and physical 

domains as described by Money (2001).  For this study, the goal is to determine how 

effective RAPTOR’s design is at supporting a decision maker’s ability to separate fact 

from fiction during fluid situations. 
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2. Command on the Modern Battlefield 

It is important to recognize that the speed and efficiency of INFOSYS 

technologies both increase, as well as degrade, the commander’s ability to make 

decisions on the modern battlefield.  NCO strives to ease the burdens of command by 

networking commanders, subordinate leaders, shooters, and battlefield sensors together 

through a robust, secure, and broadband “tactical Internet.”  For the first time in the 

history of warfare, warfighters possess the capability to share, analyze, collaborate, and 

internalize distant battlespace information in near real-time (Kemmerer, 2008).  

Commanders have the ability to digitally transmit (i.e., e-mail) graphical representations 

of their intent, concepts, and directives across the entire command.  The end users (i.e., 

subordinate leaders, individual Soldiers, etc.) also have the ability to display, store, and 

retrieve information as needed.  The increased speed, efficiency, flexibility, and 

reliability of modern communications enable commanders to decentralize decision 

making and leverage subordinate initiative to achieve mission-related goals. 

In reality, many of the INFOSYS technologies that enable NCO have given little 

consideration to the role of the human in the design or implementation of the systems 

(Read, 2007).  It is not surprising that the measures commonly used to determine 

INFOSYS effectiveness center around the processing power, storage capacity, and 

bandwidth provided by machines.  These metrics are easily quantified and relatively 

simple to produce.  On the other hand, determining human cognitive performance is 

extremely challenging due to the numerous variables and relationships involved.  

Accurate measurements of human cognition require a “constellation” of individual-

difference indices that are time consuming to produce and difficult to quantify (Aldag & 

Power, 1986). 

The failure to recognize humans as the critical information nodes within 

INFOSYS designs ultimately degrade total system performance and further complicate 

command.  Tactical operations are ongoing on the modern battlefield.  Commanders 

constantly receive influxes of new information that alter what was perceived as truth only 

moments before.  Events proceed forward in time at a rate that can quickly outpace the 

commander’s ability to comprehend their meaning (Phister et al., 2003).  Though 
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technology can be designed to provide countless terabytes of data at increasing speeds 

and efficiency, the warfighter’s mental skills, judgment, and expertise will always be 

required to determine the data’s relevancy. 

3. Control on the Modern Battlefield 

Success in command is impossible without control.  When exercising control, the 

commander must understand the effects numerous interrelated factors (e.g., enemy 

forces, terrain, weather, time, etc.) will have on tactical operations as they make decisions 

and direct friendly forces toward mission accomplishment.  NCO theory suggests that 

advanced INFOSYS technologies enable understanding by allowing commanders to 

access any type of data they desire in near real-time.  However, as stated by Shattuck, 

Graham, Merlo, and Hah (2000), “technology often overwhelms commanders by 

providing them with more information than they can possibly use (p. 116).”  Achieving 

understanding is primarily a human activity, and cannot be attained with  

technology alone. 

As Figure 2 depicts, achieving understanding requires the transformation of 

information through four different levels of meaning called the cognitive hierarchy 

(Department of the Army, 2003).  Data is at the lowest level of the hierarchy and 

comprises the unprocessed bits and bytes of information.  Commanders and their staff 

collect, filter, and sort data to determine relevancy.  Information is formed by relevant 

bits of data that are organized and fused together to provide meaning.  Knowledge is 

inherently cognitive, and involves assigning greater values of meaning to information 

through further analysis and evaluation, until potential implications on tactical operations 

are recognized (Garstka & Alberts, 2004).  Finally, understanding is achieved when the 

commander comprehends what is happening and why, and applies judgment to affect a 

specific situation’s inner relationships (Department of the Army, 2003). 



 

Figure 2.   The Cognitive Hierarchy (From:  Department of the Army, 2003). 

In the context of the cognitive hierarchy, information management (IM) is an 

essential aspect of control.  Staff personnel use IM processes to harvest and exhibit RI to 

facilitate the commander’s decision-making process.  Staff personnel assist with the 

control function by utilizing RI outputs (e.g., commander’s intent, concepts, decisions, 

etc.) to build a common operating picture (COP).  The COP serves as a guide for all 

echelons of command to follow while working toward a common goal.  Interfaces play a 

crucial role in these control activities by enabling staff personnel to display the COP in 

efficient and usable formats.  Commanders and staff personnel then leverage INFOSYS 

technologies and NCO networks to ensure the right information is shared with the right 

people at the right time (Garstka & Alberts, 2004). 

B. UNDERSTANDING THE INFORMATION AGE BATTLEFIELD 

1. The Cognitive Domain of Command 

Understanding enables the commander to form a mental picture (i.e., battlefield 

visualization) of the friendly force’s current state in relation to the enemy’s current state 

both in time and space (Department of the Army, 2003).  Forming this mental picture 

encompasses rigorous cognitive processes that allow commanders to: 

 Make more accurate assessments for how the environment will impact 

operations (e.g., terrain, weather, temperature, light, time, etc.). 
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 Determine the current operational state of friendly and enemy forces (e.g., 

location, capabilities, status of resources, morale, etc.). 

 Formulate alternative COAs that capitalize on friendly force strengths and 

enemy weaknesses. 

 Direct forces in order to achieve mission related objectives (i.e., 

communicating intent, concepts, and decisions). 

The proficiency at which decision makers apply these cognitive processes 

depends on the cognitive domain, or mind, of the individual commander.  This is the part 

of a commander’s brain where doctrine, TTPs, knowledge, SA, intent, and decision-

making skills reside (Department of Defense, 2001). 

Ultimately, INFOSYS’ success in enhancing decision-maker performance relies 

on the integration of human cognition and technological capability (Read, 2007).  The 

key to this integration is a firm understanding of the human cognitive capabilities and 

limitations within INFOSYS.  A human’s thought process, as described by Garstka and 

Alberts (2004), is a process of “sensemaking,” or forming awareness of key elements 

relevant to the mission.  The process begins when a person senses, or perceives, incoming 

stimuli (i.e., data).  The person’s cognition interprets meaning by forming schemas, or 

“mental models,” to compare the information against similar situations experienced in the 

past.  As the person makes sense of this mental picture, he evaluates available options, 

and then decides what action to take (Smith, 2006).  Over time, people gain experiences 

from which they compile a repertoire of mental models that apply across a range of 

situations (Garstka & Alberts, 2004). 

However, as previously discussed, humans have limited cognitive resources in 

which to comprehend large amounts of information.  Constant influxes of ambiguous 

and/or conflicting information can severely impede a person’s ability to make sense of 

the situation.  Commanders may succumb to cognitive biases generated by their 

inaccurate interpretation of the environment (Garstka & Alberts, 2004).  These biases 

potentially cause decision-makers to deviate from objectivity and make errors in 

judgment (Arden, 1996). 
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While certain cognitive activities (e.g., working memory) draw on limited-

capacity resources, other activities (e.g., pattern-recognition) draw on virtually unlimited 

perceptual resources (Bennett, Payne, & Walters, 2005).  Garstka and Alberts (2004) 

describe people’s cognitive capabilities as very good at identifying patterns in disparate 

information, making inferences, and learning.  Therefore, information complexity in itself 

is not a problem, given meaningful information is presented in a coherent and structured 

manner (Rasmussen, 1992).  The essential notion being that in order for INFOSYS 

technologies to improve total system performance and effectiveness, information must be 

constructed into representations that exploit the inherent pattern-recognition capabilities 

of the human, while also decreasing reliance on limited-capacity resources (Bennett et al., 

2005).  Fortunately, as Rasmussen and Vicente (1990) argue, the power and flexibility of 

information technology make it possible for interfaces to adapt to human capabilities  

and limitations. 

2. Cognitive Integration of Information  

Shattuck et al., (2000) explains that “cognitive integration occurs as commanders 

and staffs extract data from disparate resources and combine them in ways to create a 

veridical, holistic view of the environment (p. 117).”  Thus, the cognitive integration 

process aids the commander in achieving understanding.  Commanders craft several 

products such as the commander’s intent, commander’s critical information requirements 

(CCIR), and planning guidance to describe their understanding (Department of the Army, 

2003).  Staffs, in turn, use these products to construct the COP. 

The physical and information domains provide the infrastructural and 

informational foundation for information collection and integration (Garstka & Alberts, 

2004).  Money (2001) attributes the physical domain as the traditional domain of warfare.  

This is where the physical platforms and the communications networks that connect them 

reside.  The information domain is where information is created, codified, and shared.  

This is also the domain where the C2 of modern military forces is communicated, and 

where the commander’s intent is conveyed (Department of Defense, 2001).  The 

networks within the physical domain enable the transfer of information packaged in the 



information domain (Garstka & Alberts, 2004).  As Figure 3 suggests, managing the 

cognitive, physical, and information domains while also analyzing and integrating 

information extracted from nodes located throughout the battlefield is an extremely 

dynamic activity. 

 

Figure 3.   C2 Conceptual Model (From:  Phister, Busch, & Plonisch, 2003). 

Thus, cognitive integration occurs in evolving contexts such as those inherent in 

the C2 of tactical operations (Shattuck et al., 2000).  For example, as tactical units execute 

assigned tasks in the physical domain, they report friendly and enemy actions in the 

information domain.  The commander and his staff assess the causes for the action, and 

analyze the effects potential reactions will set in motion.  Conclusions drawn from the 

analysis trigger more decisions to be made in the cognitive domain, which are 

subsequently disseminated in the information domain.  This action-reaction sequence 

stimulates other agents to respond during ensuing cycles, with the cycles repeated time 

and again in the course of an interaction (Smith, 2006). 

Integrating data collected from various technological sources and multiple agents 

is an arena in which C2 interfaces can provide considerable assistance to commanders.  

For example, shifting at least some portion of the integration task to a cooperative 
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machine agent frees the cognitive resources of decision-makers to reason about the 

situation in a more sophisticated manner.  Second, interfaces designed to make salient the 

data that are most important focus the commander on the significant portions of the 

battlefield.  Third, interfaces can enable commanders to employ simplifying strategies 

such as tracking events at higher levels of hierarchy that reduce their cognitive load 

(Shattuck et al., 2000).  Also, in the context of on-going operations, interfaces can 

provide feedback loops that enable commanders to determine whether planned actions 

achieved or deviated from intended effects (Smith, 2006).  Finally, interfaces can display 

the commander’s battlefield visualization in meaningful and structured representations 

that subordinate leaders and Soldiers can understand and use when executing assigned 

tasks to achieve common goals. 

C. THE CONGRUENCE OF DECISION MAKING AND SA IN C2 

1. Decision Making During Tactical Operations 

FM 6-0 (2003) describes decision making as selecting the one most favorable 

COA to accomplish a mission.  The United States Army’s traditional view toward 

selecting the best COA is for commanders and staff personnel to use structured, 

analytical processes to generate and compare several alternative solutions to the problem 

until a superior solution is identified (Department of Defense, 2003).  The Military 

Decision-Making Process (MDMP) is an example of an analytical or rational choice 

decision-making model routinely used at the tactical levels.  MDMP’s methodical process 

serves well for decision-making in complex and unfamiliar situations because it helps 

commanders and staffs organize their thoughts to ensure all factors have been considered, 

analyzed, and evaluated before reaching decisions.  Though MDMP assists commanders 

in developing precise plans with minimal human error, its deliberate and time-consuming 

process is not appropriate during time-constrained situations commonly encountered 

during the execution phases of tactical operations (Department of Defense, 2003). 

For the past couple of decades, numerous studies have been conducted to gain 

insight on how experienced practitioners make decisions in complex real-world settings 

characterized by time pressure, uncertainty, ill-defined goals, and high personal stakes.  
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Decision making in these types of environments are commonly referred to as naturalistic 

decision making (NDM), which has been widely accepted in recent years due to its utility 

in operational settings (Shattuck, 2007).  The latest versions of United States Army 

doctrine recognizes NDM’s utility during certain situations, and describes the process as 

intuitive decision making (Department of Defense, 2003).  Perhaps most importantly, as 

stated by Kemmerer (2008), “NDM characteristics describe the situations and context for 

modern military exercises and engagements” (p. 9) (e.g., March 2002 combat operations 

to destroy al Qaeda and Taliban forces in Afghanistan’s Shah-i-Kot Valley). 

In examining the utility of NDM in tactical operations, Lipshitz, Klein, Orasanu, 

& Salas (2001) cite studies where naval surface ship commanders, tank platoon leaders, 

and infantry officers were used to determine decision strategies normally employed by 

proficient decision makers during complex and time constrained situations.  Findings 

from these studies suggest that proficient decision-makers use their experience and 

training to pattern match appropriate responses to the given situation.  They then develop 

and mentally wargame one plausible COA rather than taking time to deliberately and 

methodically contrast the COA with multiple alternatives using a common set of abstract 

evaluation dimensions (Ross, Klein, Thunholm, Schmitt, & Baxter, 2004).  Therefore, 

NDM can be viewed as a form of satisficing, rather than optimization, since commanders 

often decide on COAs that are simply “good enough”.  Although a number of models fall 

within the NDM framework, Klein’s Recognition Primed Decision-Making (RPD) model 

serves as the prototypical NDM model (Lipshitz et al., 2001). 

The RPD model was developed on the basis that while under time pressure, 

commanders rely on past experiences to select their COA rather than generating a large 

set of options (Klein, 1993).  The RPD model (see Figure 4) currently consists of three 

variations depending on the familiarity of the situation.  During familiar situations, 

skilled decision makers can usually generate a feasible COA as the first one they 

consider.  During settings where the situation is not clear, the decision maker will often 

rely on a story-building strategy to mentally simulate (i.e., wargame) events and construct 

one solution more plausible than another.  In the third variation, the decision maker can 

employ a “progressive deepening” strategy to anticipate whether the COA will succeed or 



fail by determining if unacceptable consequences exist.  If unacceptable consequences do 

potentially exist, the decision maker can continue to mentally wargame events until a 

reasonable alternative is identified (Lipshitz et al., 2001). 

 

Figure 4.   Recognition Primed Decision Model (From:  Klein, 2008). 

FM 6-0 (2003) stresses that analytical and intuitive decision-making are 

complementary thought processes.  The use of one process over another depends on time 

available and the nature of the specific situation.  Hamm (1988) even proposes that a 

proficient decision-maker’s thinking will often shift between analysis and intuition, while 

never releasing his hold on either of the two.  Nevertheless, most analytical models tend 

to ignore experience and perception as critical variables in decision making, while NDM 

models place them at the center of interest.  The emphasis on perceptual processes and 

dynamic action constraints in decision making has increased the awareness of the 

potential role C2 interfaces can play in providing effective decision support to 

commanders (Bennett et al., 2008).  However, while the aforementioned models describe 

general processes of decision making during tactical operations, they do not address the 

role perception plays at shaping a commander’s perspective for how a given decision 

may potentially influence specific events. 
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2. The Function of Perception in Dynamic Environments 

Perception is an active process of inference in which a person constructs reality 

from raw data collected by the senses (Arden, 1996).  In the context of dynamic 

environments, the most important aspect of perception is the extent to which the process 

enables a commander to accurately forecast how current events will potentially impact 

future goals, objectives, and end states.  The perception of elements within a volume of 

time and space, the comprehension of their meaning, and the projection of their status in 

the near future is commonly referred to as situational awareness (Endsley, 1995).  In 

tactical situations, accurate SA facilitates flexible and agile forces that are capable of 

acting faster than the enemy (Bushey & Forsyth, 2006). 

SA is a dynamic and multifaceted concept that has been associated with complex 

military systems since the term was first introduced by United States Air Force pilots 

during the Vietnam War.  FM 1-02 defines SA as knowledge and understanding of the 

current situation which promotes timely, relevant, and accurate assessments of friendly, 

enemy, and other operations within the battlespace.  The situations of most concern to the 

warfighter’s SA are those which can vary rapidly, and which the commander is 

responsible for managing through decisive action.  To be of value, the awareness of a 

situation of concern must cover all relevant factors, be up-to-date, be expertly interpreted, 

and capture the real meaning and full implications of the situation (McGuinness, 2004).  

Endsley (1995) portrays a warfighter’s situation valuation process through three distinct 

levels of SA: 

 Level 1 – perception of elements in the environment 

 Level 2 – comprehension of the current situation 

 Level 3 – prediction of the future actions of data elements 

 Success at higher levels of SA depends on a person’s knowledge of events during 

the lower levels of SA.  For example, a commander may perceive a deviation in the 

planned action of a subordinate element, comprehend how the deviation may endanger 

task achievement to potential enemy counter-actions, understand when and where the 

future contact will take place, and finally, predict how serious the outcome may be.  The 
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diagnostic distinction between the three levels is important because breakdowns in a 

perceptual/cognitive operation will possess very different consequences for addressing 

each level (Wickens, 2008). 

 It is important to point out that accurate decision making does not rely solely on a 

commander’s achieved level of SA.  It is entirely possible for a commander to have 

excellent SA and still disseminate poor directives because he may lack the requisite 

knowledge to implement corrective procedures aimed at remedying the situation.  

Likewise, it is also possible for a commander with minimal SA to implement timely and 

accurate decisions because his experience and training may be sufficient enough to offset 

his degraded view of the situation (Adams, Tenney, & Pew, 1995).  Hence, it is worth 

noting that a commander must still understand the task demands regardless of the level of 

SA he has achieved.  Therefore, in the context of dynamic environments, perhaps the 

most important concept of SA may be the degree to which the process facilitates a 

commander’s coordination of his own perception, decision making, and action loop 

(Flach, 1995). 

 Like any complex work domain that relies on technology to assist operators as 

they cope with novel situations, the United States Military strives to develop interfaces 

that enhance SA and increase operator performance.  Though seemingly simplistic, the 

tools often provided to enhance SA are no longer simple; they are amazingly intricate and 

require operators to perform elaborate perceptual and cognitive tasks (Endsley & 

Garland, 2000).  As such, acquiring and maintaining high levels of SA must be 

appreciated as an integral part of the operator’s mental workload (Adams et al., 1995).  

An increase in workload can divert scarce cognitive resources from maintaining SA, 

while a well-designed usable display can both reduce workload and increase SA 

(Wickens, 2008).  Thus, when evaluating the scale to which new technological design 

concepts actually improve (or degrade) operator SA, it is imperative to systematically 

evaluate them based on a measure of SA (Endsley, 1995). 

The magnitude to which evolving technology affects the man-machine symbiosis 

must be highlighted as a primary concern due to increasing dependence humans place on 

the use of computers and other automated tools.  When determining an interface’s 
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effectiveness at assisting the warfighter with gaining understanding, maintaining SA, and 

decision making processes, one must apply a model that includes both man and machine.  

The model that best portrays this necessary relationship is the Dynamic Model of 

Situated Cognition (DMSC). 

3. Situated Cognition in Fluid Real-World Settings 

The tenets of NCO presume that a robustly networked force will ultimately result 

in dramatically improved mission effectiveness facilitated by enhanced decision-making 

and increased levels of SA (Garstka & Alberts, 2004).  A 2002 study conducted by 

Maritime Systems Action Group One (MAR AG-1) specifically examined the 

“exponential” increases in mission effectiveness claimed for NCO technologies.  Results 

of the study led MAR AG-1 to conjecture that a change in the use of technology (rather 

than a change in technology itself) is required since the positive effects of technology on 

human behavior is difficult to validate in all but the most simplistic of circumstances 

(Hazen, Burton, Klingbeil, Sullivan, Fewell, Grivell, Philp, & Marland, 2003).  Thus, the 

challenges associated with integrating technological systems adept at supporting a 

warfighter’s decision-making and SA in fast-paced and dynamic environments continues 

to remain a central concern within the United States military. 

DMSC represents this integration of man and machine in tactical operations, and 

illustrates how human decision-making processes are influenced by technological agents.  

DMSC achieves this by providing a model that couples NDM theory (see Chapter II.C.1.) 

with a conceptual model that, unlike RPD, includes technology to provide a more robust 

insight into total system performance (Shattuck & Miller, 2006).  Simply stated, in 

addition to the characteristics of individuals, DMSC takes into account that the design of 

an interface can also affect SA and decision making by representing the environment 

more or less accurately (Endsley, 1995; Shattuck & Miller, 2006).  Thus, before 

discussing how interface designs can help commanders cope with the speed, uncertainty, 

and ill-structured situations inherent on the modern battlefield, one must first understand 

the inextricable links that exist between the technological components and the human 

agents in the C2 system (Shattuck & Miller, 2006). 



DMSC (see Figure 5) employs a process tracing technique (i.e., uses multiple data 

collection methods throughout the man-machine system) to assess human-system 

performance (HSP).  This assessment is conducted by mapping a decision-maker’s 

cognition (i.e., perception, interpretation, understanding, etc.) as events within 

operational settings unfold (Shattuck & Miller, 2006). 

 

Figure 5.   Dynamic Model of Situated Cognition (From:  Miller & Shattuck, 2006). 

a. Technological Aspects of DMSC 

Oval 1 depicts everything in the environment.  The various shapes and 

colors represent individual data elements located throughout the battlespace (i.e., terrain, 

weather, enemy, friendly, civilians, etc.).  Oval 1 can be referred to as ground truth, or as 

a “God’s eye view” of reality (Shattuck & Miller, 2006). 

Oval 2 depicts those data elements accurately detected by battlefield 

sensors.  Oval 2 contains only a subset of data from Oval 1 since it is impossible for even 

the most sophisticated array of technological systems to detect everything that exists 

within the environment. 

Oval 3 represents data displayed on an operator’s screen.  Oval 3 is an 

even narrower subset of data due to the inaccuracies propagated by faulty sensors in  
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Oval 2.  Misrepresentations can also occur when data is fused by flawed technological 

nodes linking Ovals 3 and 2 together, or can be misrepresented by poorly designed 

displays (Shattuck & Miller, 2006). 

b. Human Aspects of DMSC 

The model incorporates three lenses (labeled A, B, and C in Figure 4) that 

mediate how information is processed by the decision-maker (Read, 2007).  As can be 

seen in Figure 6, the lenses focus attention toward certain data, and in some cases change, 

skew, and even bias how a commander perceives, comprehends, and makes projections 

as information passes through his individual lenses. 

 

Figure 6.   Integration of Distorted Information (From:  Miller & Shattuck, 2006). 

According to the model, Lens A directs the commander’s attention to 

selected incoming stimuli (e.g., visual and auditory) from Oval 3.  Oval 4 represents an 

even smaller subset of data perceived by the commander.  Shattuck and Miller (2006) 

describe this perception process in terms of passive or active input.  Active input can be 

considered as specific information requested by the commander, while passive input is 

non-requested information.  Numerous factors (e.g., social culture, operational goals, 

guidelines, training, experience, and fatigue) contribute to the narrowing perception of 

data by influencing which stimuli a commander focuses his attention on. 
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Oval 5 represents comprehension (i.e., understanding) of the information, 

while Oval 6 represents the commander’s projections (i.e., prediction).  Lenses B and C 

are impacted by the same factors that directed the commander’s attention and perception 

(Shattuck & Miller, 2006).  By Oval 5, the commander will have made decisions and 

issued directives based on the way his cognitive processes fused, processed, and 

organized information filtered by Lens B.  Oval 6 (Projection) is depicted by a larger 

broken border that illustrates the commander’s mental model for what he believes to be 

true, and his projections for how future events will unfold.  It is important to note that the 

amorphous shapes surrounding Ovals 5 and 6 represent varying interpretations of 

information (Shattuck & Miller, 2006).  Though numerous commanders may receive the 

same data, their interpretations, decisions, and predictions may differ along varying 

degrees as their individual lenses influence their understanding and levels of SA. 

c. Technological Influences on Decision-Making and SA 

DMSC also incorporates feedback loops (see Figure 7) to provide insight 

into the cognitive processing and decision-making of a practitioner (Shattuck & Miller, 

2006).  SA and decision-making is an iterative process that evolves throughout a 

perception-action-reaction cycle, and is represented in Ovals 2 to 5.  Understanding 

enables a commander to make projections for how he expects events to unfold.  The 

commander may reorient battlefield sensors (e.g., UAV, UGV, etc.) to confirm or deny 

his expectations.  This decision is represented by the feedback loop from Oval 6 to Oval 

2.  Additional data collected by sensors flow from Oval 2 to Ovals 3, 4, 5, and 6 

(Shattuck & Miller, 2006). 



 

Figure 7.   Feedback Loops in the DMSC (From:  Miller & Shattuck, 2006). 

These feedback loops highlight important considerations for C2 interface 

designs.  First, data must be presented (Oval 3) in a coherent and structured manner so 

that the operator can focus sufficient cognitive resources (Oval 4) to accurately interpret 

(Oval 5) meaning (Rasmussen, 1992).  Next, perceptual cues provided by the interface 

display must be salient enough to assist an operator at determining how they expect 

events to unfold (Oval 6) (Bennett et al., 2005).  Finally, information represented on the 

interface display must be sufficiently robust so that an operator can identify and mitigate 

uncertainty by refining sensor inputs, updating technological outputs, or changing their 

cognitive approach (Ovals 2 through 4) (Kemmerer, 2008). 

These considerations, as well as the numerous other human system 

integration challenges described during the preceding discussions, set the conditions 

required to adequately portray how RAPTOR’s design improves total system 

performance by supporting human capabilities and limitations. 
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D. THEORETICAL FOUNDATIONS OF RAPTOR 

1. Cognitive Systems Engineering (CSE) Design Framework 

The RAPTOR interface employs a CSE approach to assist military practitioners in 

executing C2 during tactical operations.  CSE provides the overarching framework, 

concepts, and analytical tools that can be used to guide the development of intuitive and 

highly graphical interfaces (Bennett et al., 2008).  Unlike design schemes used for many 

expert tools, CSE emphasizes interface designs that support knowledgeable professionals 

by keeping, rather than replacing, the human in the loop (Potter, Elm, Roth, & Woods, 

2001).  Consequently, RAPTOR’s design methodology seeks to capitalize on a military 

practitioner’s experience, training, and knowledge by utilizing technology to transform 

decision-making from a cognitive activity to a perceptual activity (Bennett & 

Zimmerman, 2001).  Therefore, the CSE process must be reviewed to appreciate how 

RAPTOR’s design will enable military commanders to effectively see themselves, the 

terrain, and the enemy. 

An effective CSE process must consider the three mutually interacting 

“behavioral-shaping” constraints of domain, agent, and interface in the design of a system 

(Bennett et al., 2008).  These constraints have been discussed at great length throughout 

the preceding sections of this study, but can be summarized accordingly: 

 Domain – goals, laws, physical, and functional considerations that lie 

within complex work domains. 

 Agent – cognitive/perception/action capabilities and limitations of human 

agents conducting the specific work domain task requirements. 

 Interface – functionality/design characteristics that introduce various 

resource demands on users. 

As Figure 8 illustrates, the connections between these component constraints must 

be properly mapped in order for an interface to provide users with robust cognitive 

support as they execute multifarious tasks inherent in complex work domains (Potter  

et al., 2001).  Thus, a fundamental premise of CSE is that a detailed analysis of the work 

to be accomplished within a domain of application is critical.  Therefore, CSE provides 

analytical tools (the abstraction and aggregation hierarchies) to identify and thread 



fundamental component connections together during work domain analyses (Bennett & 

Zimmerman, 2001).  Results of these analyses drive designs for the informational content 

that must be presented by interface displays. 

 

Figure 8.   Structure of Interface Design Problem (From:  Vicente & Rasmussen, 
1992). 

a. Abstraction Hierarchy 

The abstraction hierarchy is a useful analytical tool for representing a 

work domain in a way that is relevant to interface designs (Vicente & Rasmussen, 1992).  

As previously discussed, in the C2 system there are end-states (e.g., goals, objectives, 

etc.) that must be achieved, and finite resources (e.g., functional and physical means) that 

can be used to achieve those objectives.  The abstraction hierarchy describes these 

“means-end” relationships that exist between goal and resource constraints along each 

level of the hierarchy.  The general characteristics comprising each abstraction level in a 

C2 system are: 

 Functional Purpose - to synchronize combat resources and BOS elements 

to achieve mission accomplishment. 

 28



 29

 Abstract Function – involves the appropriate allocation and expenditure 

of finite combat resources (e.g., people, equipment, technology, and 

logistics) to achieve objectives and goals. 

 Generalized Function – comprises the numerous functions and activities 

performed by commanders and staff personnel during the C2 of tactical 

operations.  These tasks include gaining understanding, constructing the 

COP, making decisions, issuing directives, projecting future events, 

managing information, etc. 

 Physical Function – requires an understanding of the capabilities and 

limitations of physical elements located in the environment (friendly and 

enemy).  Examples include effective ranges of weapon systems, cruising 

speed of vehicles, sensitivity of sensors, payload capacity of aircraft, 

killing radius of munitions, physical fitness of Soldiers, bandwidth of 

INFOSYS, etc. 

 Physical Form – requires an understanding for where physical elements 

are located throughout the battlespace (friendly and enemy).  Also requires 

an understanding for the effects numerous interrelated factors  

(e.g., distances, terrain, weather, temperature, time, light, etc.) will have 

on these elements during tactical operations. 

The resulting descriptions allow constraints to be mapped in terms of 

reasons, causes, and effects that are nested upwards and downwards through the 

abstraction hierarchy (Bennett et al., 2008).  An important property of this mapping 

technique is that higher levels of the hierarchy require less detailed representations than 

lower levels of the hierarchy.  As faults occur in the lower levels of the hierarchy, their 

causes and effects propagate upward through the hierarchy, while the reasons for the fault 

propagate back downwards to the lower levels of the hierarchy.  The outputs of this 

mapping technique result in two important benefits: it provides operators with an 

informational basis for coping with unanticipated events, and provides a psychologically 

valid representation for problem solving (Vicente & Rasmussen, 1992). 



 30

Consequently, the abstraction hierarchy provides a design technique that 

allows RAPTOR to capture critical data pertaining to the goals, purposes and constraints 

of tactical operations, and then represents their information in the form of icons, graphs, 

charts, and tables directly on the display (Talcott, Bennett, Martinez, Shattuck, & 

Stansifer, 2007).  As Figure 9 illustrates, these representations are arrayed either on, or 

along a contour map of the battlespace, which aids the operator in interpreting their 

meaning in time and space.  Information presented in this manner provides visual 

salience, which enables the commander to focus attention on the priority measures  

that have a significant impact on operations (e.g., combat power, resource status, weapon 

range envelopes, force ratios, distances, terrain, time, etc.).  Also, certain symbols are 

designed to change colors as events evolve (e.g., combat resource icons, combat resource 

displays, control tree, etc.).  These changing colors represent either planned expenditures 

over time, or faults propagating upward through the hierarchy.  Therefore, not only does 

RAPTOR’s design help to make salient the data that are most important, but also provide 

the commander with feedback loops that assist him in determining whether actions 

achieved or deviated from intended effects.  In short, RAPTOR’s representations of 

critical cues in time and space can help a commander to cope with complex, dynamic, 

and novel situations by simplifying his overall sense of real-world problems  

(Smith, 1989). 



 

Figure 9.   Overview of RAPTOR Interface. 

b. Aggregation Hierarchy 

The aggregation hierarchy is an analytical tool used to provide models for 

the “part-whole” structure of a domain (Bennett et al., 2008).  As stated previously, the 

commander is overall responsible for C2 and must understand the situation before making 

decisions.  However, C2’s complexity makes it impossible for a commander to view, or 

even consider, the system’s entire range of subcomponents and functions simultaneously.  

Fortunately, the aggregation hierarchy provides a mechanism for coping with this 

complexity by, as Vicente and Rasmussen (1992) succinctly describe, allowing the 

commander to “see the forest through the trees (p. 593).” 

An important premise of the aggregation hierarchy is that higher level 

(i.e., less detailed) forms of representation are easier to comprehend and more efficient to 
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manage than lower level (i.e., more detailed) representations (Vicente & Rasmussen, 

1992).  A simple analogy for this premise can be found in automobile warning lights.  For 

example, a driver notices that a fault has occurred when the “check gauges” light 

illuminates on his dashboard.  A quick examination of the gauges reveals the faulty 

function stemming from high engine temperatures.  The driver stops his vehicle and 

continues his investigation by inspecting only those components that are functionally 

responsible for cooling the engine during operation.  This is an efficient search since all 

components and subcomponents not related to the engine cooling system can be ignored. 

Accordingly, RAPTOR’s display presents icons, graphs, charts, and tables 

at higher and intermediate levels of visual salience.  Information presented in higher 

levels of hierarchy reduces a commander’s cognitive load by allowing him to employ 

simplifying strategies while monitoring battlefield events.  The intermediate level 

representations cue the commander’s attention toward faults that potentially jeopardize 

goals and objectives.  Lower levels of detailed data are also updated, but these data are 

only available when “drilled-down,” or accessed, by the operator.  This design 

characteristic automates a portion of the information integration tasks, which frees 

additional cognitive resources that enable the commander to reason about situations in a 

more sophisticated manner (Talcott et al., 2007).  Furthermore, RAPTOR’s display 

design arranges the various forms of information in a vertical and horizontal array on a 

single screen.  This arrangement supports the perception of information in time and 

space, and reduces the operator’s workload by decreasing the need to divide attention 

between multiple sets of tools.  Hence, decomposed representations of the C2 system, 

displayed in a coherent and structured manner, ultimately enables commanders to 

problem solve in the same economic and proficient fashion as our fictional driver. 

c. Skills, Rules, Knowledge (SRK) Taxonomy 

While the abstraction and aggregation hierarchies provide models for 

mapping work domain constraints to interface designs, the SRK taxonomy provides a 

guide for communicating the domain design structure and information content to users.  

As previously discussed in Chapter II.B.1., operators must cope with the demands of the 
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domain by utilizing their limited cognitive resources.  Therefore, it is imperative that an 

interface design strategy takes advantage of the most powerful resources that people have 

for dealing with complexity.  The SRK taxonomy provides a useful framework for 

capturing the various mechanisms people possess for information processing (Vicente & 

Rasmussen, 1992). 

Skilled decision makers tend to use their experience and training to 

determine the relevancy for events transpiring during fluid and time-constrained 

situations (Lipshitz et al., 2001).  Though Hamm (1988) agrees that perception is closely 

related to good performance, findings from his studies suggest that the skilled decision 

maker often shifts between intuitive and analytical modes of thinking when engaged in 

problem-solving activities (see Chapter II.C.1.).  Therefore, SRK’s most important 

concept is that it emphasizes the incorporation of both modes of cognitive control into 

interface designs since perception is not always superior to analysis. 

In simple terms, RAPTOR displays information in accordance with 

standard United States Army symbols and icons that represent “signals” existing in the 

environment (see Figure 9).  These signals provide “affordances,” or actions, the operator 

must execute (Bennett et al., 2008).  As illustrated in Figure 9, signal representations are 

arrayed on a contour map of the battlespace, which further aids the operator in 

interpreting their meaning in time and space.  This design feature takes advantage of the 

commander’s skilled-based behavior by enabling him to monitor the status of battlefield 

events while exerting limited conscious control. 

Other informational representations presented in the temporal and spatial 

synchronization displays provide a set of explicit rule-based actions to be followed during 

the execution of tactical operations (see Figure 9).  Successful rule-based behavior 

requires the operator to recognize previously devised cues (e.g., maneuver toward a 

specific terrain feature), and a conscious choice regarding the appropriate behavior when 

executing actions at those cues (e.g., transition to a different maneuver formation) 

(Bennett et al., 2008).  In short, commanders can use RAPTOR’s perceptual signals, 

cues, and their experience to quickly determine how they expect events to unfold 

(Bennett et al., 2008). 
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Knowledge-based behaviors involve situations that have not been 

previously encountered or accounted for during prior planning sessions.  These novel 

situations require the commander to use limited capacity resources as he devises alternate 

COAs and considers probabilities of success for each response.  RAPTOR’s symbolic 

representations of graphical information (e.g., topographical map, combat resource 

display, primary munitions envelopes, control tree display, etc.) eases this burden by 

providing normative externalized mental models of processes that can support the 

commander as he pattern matches and mentally simulates responses.  Thus, RAPTOR’s 

use of robust representations exploit the military practitioner’s experience and training, 

while also aiding in his analysis and decision making (Potter et al., 2001). 

2. Ecological Interface Design Principles 

The CSE portions of this chapter discussed how RAPTOR accounts for and 

leverages behavioral-shaping constraints inherent in the work domain and the agent.  EID 

is a branch of CSE that specifically addresses the behavioral-shaping constraints inherent 

in interface designs (Bennett et al., 2008). 

It is critical to understand that interfaces designed on an incorrect understanding 

of cognition will ultimately degrade, rather than improve, performance (Klein et al., 

2003).  Thus, any interface designed to support humans as they execute tasks in complex 

work domains must reduce the amount of cognitive demands placed on the operator.  EID 

aims to accomplish this by making interfaces transparent and highly intuitive to operate 

(Rasmussen & Vicente, 1990).  The following sections illustrate how the EID principles 

of direct perception, direct manipulation, and the perception-action loop have been 

incorporated into RAPTOR’s design to transform the interaction requirements associated 

with decision making and problem solving from cognitive activities to perceptual-motor 

activities (Bennett et al., 2008). 

a. Direct Perception 

Rasmussen and Vicente (1990) assert that “interface designs must take 

advantage of the human’s remarkable perception and action capabilities (p. 101).”  The 
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direct perception of signals and cues decrease cognitive resources and mental effort 

required, which allows the operator to use visual perceptual skills to make sense of events 

occurring in the battlespace.  Enabling direct perception of events represented by 

interface designs requires at least two sets of mappings (Talcott et al., 2007).  Gibson, as 

quoted by Rasmussen (1992), said the first set (i.e., content mapping) requires “the 

designer to create a virtual ecology” by mapping the means-end relationships that exist 

between domain constraints “in such a way that the user can read the relevant affordances 

for actions (p. 99).”  In other words, content mapping encodes information content from 

all levels of the abstraction hierarchy in the form of graphical representations.  

Essentially, these representations mimic signals and cues an observer would encounter 

while operating in the natural environment. 

However, designers must also guard against creating graphical 

representations in such complexity that they confound the observer’s ability to 

comprehend their meaning.  Therefore, the second set of mapping (i.e., form mapping) 

involves the relationship between the visual properties of the graphical representations 

and the perceptual capabilities and limitations of the observer (Talcott et al., 2007).  Form 

mapping results in representations that present the part-whole structure of a domain, 

which allows the operator to employ simplifying strategies (e.g., chunking) as they make 

sense of the overall problem space.  Therefore, interface designs must facilitate the 

observer’s ability to determine the appropriate control actions to be executed based on the 

types of signals and cues perceived.  Designs that allow observers to choose between 

varying levels from which to view graphical representations make it easier to perceive 

these signals and cues.  The following discussion explicitly illustrates how RAPTOR’s 

rich set of graphical representations incorporate content and form mapping design 

principles that leverage the human’s perception and action capabilities. 

(1) Spatial Synchronization Display.  As can be seen in  

Figure 9, the left side of RAPTOR’s display represents coarser (i.e., high) levels of detail, 

while the right side represents finer (i.e., intermediate) levels of detail (Bennett et al., 

2008).  Figure 10 illustrates higher level representations of physical elements (terrain, 

friendly forces, enemy forces, and synchronization points) arrayed on a topographical 



map.  These provide the commander with salient visual representations of signals existing 

in the environment, and cues for actions that must be executed.  Visual changes in the 

display (e.g., icon color changes) indicate either predetermined combat resource 

expenditures, or faults propagating upward through the hierarchy (e.g., a unit is in danger 

of not meeting mission requirements).  These design characteristics provide feedback 

loops from which the commander can see deviations as they occur.  Feedback loops assist 

the commander with making decisions that help influence how he expects events  

to unfold. 

 

Figure 10.   Spatial Synchronization Display. 

(2) Temporal Synchronization Display.  A critical aspect of 

control is the synchronization of combat force activities toward achieving common goals 

and end-states.  Figure 11 depicts a representation of a combat activity coordinating tool 

(i.e., synchronization matrix) commonly used by commanders and staff personnel.  The 

synchronization matrix meshes subordinate unit tasks with higher-level purposes.  

Though the spatial and temporal synchronization displays are being described separately, 

it is important to realize they are designed to work together in a complementary fashion 

(Bennett et al., 2008).  Essentially, RAPTOR nests information in the temporal 

synchronization display with representations located in the spatial synchronization 
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display.  This nesting technique provides the commander with visually salient depictions 

of critical activities to be coordinated in time and space. 

As can be seen in Figure 11, the X axis of the display depicts time 

ranging from initiation of tactical operations to X + projected mission completion time.  

Present time for the engagement is depicted by the thin vertical blue line.  The Y axis 

captures the identities of the maneuver elements represented as icons in the spatial 

synchronization display.  The text located in the lighter cell areas specify tasks and 

purposes assigned to each maneuver unit.  The thick gray vertical lines are tied to 

synchronization points presented in the spatial synchronization display (see Figure 10) 

and represent preplanned points in time, or conditions, where specific unit coordinating 

activities must be accomplished. 

 

Figure 11.   Temporal Synchronization Display. 

(3) Friendly Combat Resource Display.  Combat power is 

perhaps the most important factor a commander must consider when planning and 

executing tactical operations.  The amount and type of resources that constitute overall 

levels of combat power will determine the feasibility of successfully achieving goals and 

objectives.  As discussed in the opening chapter, combat resources are finite, and their 

expenditure must be proportional to any advantages gained during an engagement.  Thus, 

the commander must constantly be aware of the levels at which these resources exist, and 

must understand how their expenditures will impact tactical operations. 

Since overall mission accomplishment hinges on the ability of 

subordinate units to achieve individual assigned tasks, the commander must constantly 
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know resource statuses for both the higher and intermediate organizational levels  

(i.e., battalion [BN] and company [CO]).  During certain situations, the commander may 

also need to know lower-level resource statuses (i.e., platoon [PLT] and vehicle).  

Accordingly, RAPTOR provides salient representations of higher and intermediate 

combat resource levels.  RAPTOR also provides the commander the ability to access 

lower combat resource levels when required. 

RAPTOR displays combat resources using categorical, analog, and 

alphanumeric designators (see Figure 12).  Alphabetical designators correspond to 

specific types of resources (A:  ammunition, F:  fuel, P: personnel, T:  M1 Abrams tanks, 

B:  Bradley Fighting Vehicles).  Numeric designators correspond to quantities of a 

specific resource type on hand (e.g., F/12907 shown in Figure 12 depicts 12,907 gallons 

of fuel on hand).  The color coding used to represent statuses are in accordance with  

U.S. Army conventions (green: 100% - 85%; amber: 84% - 70%; red: 69% - 50%; black:  

49% and lower). 

 
 

Figure 12.   Friendly Combat Resource Display. 

The bars in the resource display depict analog gauges 

corresponding to resource percentages on hand.  These bars “shrink” as resources are 

expended.  Bar color changes match percentage thresholds (e.g., bottom amber bar in 

Figure 12 depicts 84% - 70% tanks on hand). 
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Categorical conventions depict the overall color for the least 

resource percentage on hand.  For example, if a BN’s aggregate available resource 

percentages are 100% (Green) for vehicles, 100% (Green) for personnel, 84% (Amber) 

for ammunition, and 69% (Red) for fuel, the BN’s categorical color convention would be 

red.  The same categorical convention is also applied at the CO level.  The background 

color for both the combat resource display, and its corresponding combat resource icon 

represented in the spatial synchronization display, reflect the categorical convention for 

the least resource percentage on hand (see “amber” status of “Charlie” CO in Figure 9). 

Though resources may not be displayed in exact quantities, their 

representations are very salient, which enables the commander to “spot check” and 

loosely monitor the status of specific resource parameters at any level desired (Bennett  

et al., 2008).  This design characteristic provides feedback loops from which the 

commander can anticipate potential deviations before they occur, and to make decisions 

that minimize deviation effects. 

(4) Enemy Combat Resource Display.  Commanders and staff 

personnel need information for similar types of combat resources and capabilities that the 

enemy possesses in order to anticipate the extent to which the enemy can impede tactical 

operations.  In reality, determining precise types and quantities of enemy resources are 

rarely achieved.  However, major enemy combat platforms and weapon systems can be 

approximated using established enemy doctrinal templates, inputs from battlefield 

sensors, and various forms of intelligence estimates.  Commanders and staffs use these 

approximations to determine the appropriate allocation of friendly resources that will 

enable mission success.  Just as the commander must monitor the status of friendly 

resources during the course of tactical operations, he must also monitor the status of 

enemy resources to make more accurate projections for how he anticipates battlefield 

events to unfold. 

RAPTOR provides salient representations of known and suspected 

enemy resources to assist the commander as he makes decisions based on projected 

outcomes (see Figure 13).  As enemy elements are positively identified, known  

 



(i.e., alive) enemy values increase, and suspected (i.e., templated) values decrease on the 

display.  Consequently, as enemy elements are disabled, alive values decrease while 

disabled values increase. 

 

Figure 13.   Enemy Resource Display (From:  Bennett, Posey, &  
Shattuck, 2008). 

Enemy combat resources are also tied to representations presented 

in the spatial synchronization display.  Their specific composition and strength are 

represented using enemy symbols in accordance with U.S. Army conventions (see  

Figure 10).  Salient visual representations of enemy combat resources assist the 

commander with determining how to employ friendly force capabilities based on the 

enemy’s strengths and weaknesses. 

(5) Force Ratio Display.  Another extremely important 

consideration in tactical operations is the relative amount of combat power that exists 

between two opposing forces at any point in time (Bennett et al., 2008).  Commanders 

and staff personnel analyze the enemy’s composition (e.g., tank and infantry fighting 

vehicle quantities) when determining appropriate allocations of friendly combat resources 

that will enable mission success.  For example, U.S. Army doctrine specifies a force ratio 

of at least three to one when attacking enemy defensive positions. 
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Predetermined estimates for how force ratios are anticipated to 

evolve must be continuously monitored during an engagement to assess progress toward 

achieving mission goals and objectives.  A lack of progress depicted by force ratio 

changes in favor of the enemy will drive a commander’s decision on whether to continue, 

alter, or abort mission plans (Bennett et al., 2008). 

RAPTOR provides a display that presents the commander with 

salient visual representations of force ratio (see Figure 14).  Two trend displays are 

depicted on the left side of the larger force ratio display.  The Y axis of the top trend 

display represents planned and actual values of friendly force ratios, while the Y axis of 

the bottom trend display depicts actual and planned values of enemy force ratios.  The  

X axis of both trend displays depicts time ranging from the engagement’s initiation to  

X + projected mission completion time. 

Two horizontal bar graphs are depicted on the right side of the 

larger force ratio display.  The top horizontal bar graph is segmented between friendly 

tanks and Bradley Fighting Vehicles.  The bottom horizontal bar graph is also segmented 

between alive and templated enemy combat platforms.  The horizontal extent of each bar 

graph toward the right represents the force equivalence values for friendly and enemy 

forces (Bennett et al., 2008). 

The two horizontal bar graphs are connected by a thick blue line 

(i.e., reflecting line) that provides a visual indicator for the difference between friendly 

and enemy force equivalence.  The reflecting line also intersects the force ratio values 

depicted by the trend displays.  The line expands horizontally across these displays as 

time progresses.  Favorable friendly force ratios are represented by a blue line 

intersecting through the top trend display.  Favorable enemy force ratios are represented 

by a red line intersecting through the bottom trend display.  Variations (or waves) in the 

reflecting line depict rates of force value changes over time.  Dark color variations 

represent actual force ratios, while light color variations represent planned force ratios.  

As can be inferred, reflecting line intersection locations, colors, and vertical variation 

distances provide salient feedback loops for how the commander can expect events  

to unfold. 



 

Figure 14.   Force Ratio Display (From:  Bennett, Posey, & Shattuck, 2008). 

(6) Other Perception Enabling Tools.  RAPTOR also provides 

additional tools designed to take advantage of human perception.  For instance, the plan 

review mode is a tool that enables commanders to track how an engagement was 

originally planned to be executed, while also displaying how events actually progressed.  

A simple analogy taken from the analysis of a football play makes this premise concrete.  

As a television football commentator analyzes a specific play for the audience, he 

displays a visual depiction for how the play was designed to be executed (e.g., arrows, 

lines, Xs, and Os).  He then overlaps a recording for how the play was actually executed 

so the audience can see where deviations occurred. 

The plan review mode displays planned friendly locations, 

activities, and resources with icons containing a black “X” (actual icons do not contain an 

X) in the spatial synchronization display (see Figure 15).  The plan review mode also 

displays and highlights preplanned categorical color codes on the right side of the analog 

bars located in the friendly combat resource display.  The plan review mode enables the 

commander to determine exactly which deviations occurred in combat resource 

expenditures during precise points in time. 
 42



 

Figure 15.   Plan Review Mode (From:  Bennett, Posey, & Shattuck, 2008). 

Another tool provided by RAPTOR is the depiction of pre-

planned, alternative COAs.  Commanders and staff personnel routinely develop multiple 

COAs that address different actions subordinate units can execute based on likely, or 

anticipated, deviations in the plan.  These COAs can be thought of as “primed plays” the 

commander can “audible” should conditions dictate their implementation.  The 

commander can review preplanned, alternative COAs at any time by rolling the cursor 

over labeled buttons at the bottom of the display (see Figure 9).  Representations of the 
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alternative COAs will temporarily replace current COA representations in the spatial and 

temporal synchronization displays.  As likely deviations in the current COA emerge, the 

commander can choose to implement a preplanned, alternative COA by clicking on the 

corresponding button, then verifying the change.  This audible constitutes a major 

modification to the existing plan, which can be viewed by other friendly elements 

monitoring networked RAPTOR interfaces. 

b. Direct Manipulation 

For an interface to be truly effective at taking advantage of human 

perceptual capabilities and limitations, the displays and controls of the interface must be 

designed to maintain an intact perception-action loop (Talcott et al., 2007).  Direct 

manipulation is a critical enabler for maintaining this loop since it allows operators to feel 

like they have control over objects located in the environment.  An analogy using vehicle 

operation provides a concrete example for how direct manipulation is tied to the 

perception-action loop.  As a driver operates a vehicle in the environment, he perceives 

various signals (e.g., the road, other vehicles, pedestrians, etc.) that prompt actions to be 

executed.  As the driver executes actions (e.g., manipulating the steering wheel, 

accelerator, and brakes), he receives immediate feedback (e.g., feels vehicular responses) 

for how well the executed actions enable continued vehicular control.  Thus, the 

fundamental goal in achieving direct manipulation is to allow domain practitioner’s to 

execute required command inputs by acting directly on representations in the interface 

(Bennett et al., 2008). 

EID principles extend the benefits of direct manipulation to interfaces 

located in complex work domains (Vicente & Rasmussen, 1992).  The objects in the 

interface can be designed to support both perception (direct perception) and action (direct 

manipulation).  When this symbiotic relationship exists in an interface, the  

perception-action loop is intact.  RAPTOR embraces direct manipulation to the fullest 

extent (Bennett et al., 2008).  Unlike FBCB2, RAPTOR does not use command lines and 

pull-down menus.  RAPTOR’s design allows users to directly act on what they see in the 

display by physically manipulating the objects on their screen (Vicente & Rasmussen, 
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1992).  Thus, all potential actions by the commander are executed directly on the 

interface.  The merger of displays and controls on the RAPTOR interface ensures an 

intact perception-action loop, thereby enhancing the commander’s perception of events 

and actions occurring in the battlespace (Bennett et al., 2008).  The following sections 

describe how RAPTOR’s design enables operators to directly manipulate representations 

located in the interface. 

(1) Synchronization Points. Synchronization point 

representations in the spatial and temporal synchronization displays can be directly 

manipulated to assist the commander with controlling friendly force activities during 

tactical operations (see Figures 10 and 11).  For example, the commander can point, 

click, drag, and release synchronization points represented in the spatial synchronization 

display to change destinations where a unit maneuvers toward.  Similarly, the commander 

can also adjust activity timing by dragging vertical synchronization points represented in 

the temporal synchronization display.  Dragging synchronization point lines left advances 

coordination timing, while dragging lines right delays coordination timing.  These 

manipulations constitute minor adjustments in the plan, and in essence, communicate a 

command directive.  Units affected by the change are able to view the modifications as 

they monitor their networked interfaces. 

(2) Graphical Replay Slider.  RAPTOR provides commanders 

with the ability to review historical events and preview planned events.  The graphical 

replay slider is located at the top of the temporal synchronization display (see Figure 9).  

The graphical replay track (i.e., horizontal line) represents execution time ranging from 

the initiation of an engagement (i.e., extreme left limit) to X + projected mission 

completion time (i.e., extreme right limit).  The physical location of the manipulable 

slider (i.e., square button) along the track corresponds to current time. 

The commander can “rewind” through historical events by 

dragging the manipulable slider left.  He can then view a “replay” of the engagement by 

dragging the slider to the right.  The replay continues until the commander drags the 

manipulable slider right of current time, which then changes the display to a preview of  
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preplanned actions.  Current mission information remains displayed as the commander 

reviews and previews events.  The manipulable slider springs back to current time  

when released. 

Thus, the graphical replay slider enables the commander to see 

exactly which deviations occurred during specific points in time.  The slider also enables 

the commander to anticipate potential future deviations as he previews planned activities.  

This design feature provides feedback loops that assist the commander in determining the 

extent to which preplanned actions will enable projected events to unfold as expected. 

(3) Other Manipulable Tools.  As stated earlier, higher levels 

of representation enable operators to better cope with complex and novel situations.  

However, effective interface designs support both intuitive and analytical modes of 

thinking by enabling the operator to choose which level of aggregation to view 

information from.  Accordingly, RAPTOR provides several options that allow the 

operator to access and track several levels of information in an efficient and economical 

fashion. 

The tree control and button controls located on the top right-hand 

side of the interface provide options for selecting various levels of combat resource 

displays (see Figure 16).  The tree control is similar to task-organization charts 

commonly used by commanders and staff personnel, and depicts the overall unit structure 

down to the CO, PLT, and vehicle levels.  The tree control provides a mechanism for the 

commander to view combat resources at any level desired.  The default setting depicts 

combat resource displays at higher (BN) and intermediate (CO) levels (see Figure 9).  

The “bubble” color codes represent categorical combat resource statuses. 

The commander can temporarily change the viewable level by 

rolling the cursor over any element depicted in the tree control.  For example, rolling the 

cursor over A CO will highlight the “A” bubble, and will change the higher-level combat 

resource display to A CO.  This will also change the intermediate-level resource display 

to the three PLTs assigned to A CO.  Similarly, the commander can continue to access 

combat resource information down to the vehicle and individual crew levels by rolling 

the cursor over a PLT (e.g., A1) or individual vehicle bubble.  Conversely, the 



commander can select a permanent view by pointing and clicking on a desired bubble.  

The combat resource display changes back to the default settings once the commander 

either removes the cursor from the lower level bubbles, or clicks the BN bubble. 

 

 

Figure 16.   Tree Control & Button Controls. 

The control buttons located on the left side of the tree control (see 

Figure 16) enable the commander to view physical locations of higher-, intermediate-, 

and lower-level combat resource icons located in the spatial synchronization display (see 

Figure 9).  RAPTOR’s default setting represents combat resource icons at the CO level.  

As stated previously, the icon color codes correspond to categorical combat resource 

statuses.  The commander can choose to temporarily view all combat resource icons at 

higher (i.e., BN) or lower levels (i.e., PLT and vehicle) by rolling the cursor over the BN, 

PLT, or vehicle control buttons.  Conversely, the commander can select a permanent icon 

level by pointing and clicking on a desired button.  The default setting is reestablished 

once the commander either removes the cursor from a button, or clicks the CO button. 

Viewing the entire range of combat resource icons at lower levels 

clutters the spatial synchronization display and provides potentially overwhelming 

amounts of information.  Therefore, RAPTOR’s design enables the commander to access 

any combination of lower-level unit information in an easy and efficient manner.  For 

example, the commander can display a company’s lower-level resource icons by pointing 

and clicking on a specific CO icon in the spatial synchronization display.  This results in 
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the replacement of that CO icon with its three PLT icons.  The other CO icons remain 

unchanged.  Similarly, vehicle level icons can be displayed by clicking a PLT icon.  This 

design feature enables a commander to successively drill down to desired levels and 

views.  Default settings are reestablished by clicking the CO button located in the button 

controls (see Figure 16). 

Finally, the commander can also “magnify” portions of the 

topographical map presented in the spatial synchronization display.  As previously 

discussed (see Chapter I.A.), terrain posses several constraints that potentially impede 

progress during tactical operations.  Thus, the commander must determine the effects 

terrain will have on friendly resources as they execute tasks.  Screen resolution settings, 

and multiple representations arrayed on the map often masks terrain contour lines.  The 

commander can investigate finer terrain details by pointing on the purple-colored reticule, 

and turning the mouse wheel clockwise (see Figure 10).  Selected portions of the map 

will magnify to higher resolution levels.  Turning the wheel counterclockwise restores the 

selected portion to the default resolution settings. 

E. PREVIOUS RAPTOR STUDIES AND EVALUATIONS 

RAPTOR has already demonstrated its potential at improving the military 

practitioner’s performance while executing C2 of tactical scenarios.  During a study in 

2007, active duty U.S. Army officers were required to perform well-constrained, but 

critical tasks of obtaining friendly force combat resource information (e.g., fuel and 

ammunition) at three different echelon levels (Talcott et al., 2007).  Participants 

performed the study in a controlled laboratory setting using simulations of both the 

FBCB2 and RAPTOR interfaces.  The results of the study showed that RAPTOR was 

superior to FBCB2 in all assessment categories (quantitative, categorical, and needs), 

dependent variables (accuracy, latency), and echelon levels (BN, CO, PLT).  The 

conclusion of the study determined that perception-icon design strategy was very 

effective in that experimental context.  Actual or potential applications from the study 

included both specific interface design strategies for military C2 and general interface 

design principles for intermediate work domains (Talcott et al., 2007). 
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Another study was conducted to investigate aspects of decision making (Bennett 

et al., 2008).  Two versions of RAPTOR (i.e., enhanced and baseline) were developed for 

the study.  Active duty U.S. Army officers assumed the role of BN commander and 

viewed dynamic, authentic tactical scenarios (either offensive or defensive) using one of 

the two interfaces.  The participants were required to answer specific questions pertaining 

to the scenario at six different points that coincided with critical events.  The results of 

the study showed that those participants who used the enhanced RAPTOR interface 

exhibited a greater tendency to produce references to plans and operations orders.  Twice 

as many references to mission plans were made by those participants using the enhanced 

interface (52) than those using the baseline interface (26).  Substantially more references 

to the mission operations order were also made by participants using the enhanced 

version (24 versus 15) (Bennett et al., 2008). 

RAPTOR’s initial successes illustrate the interface’s potential to facilitate better 

decision-making and enhanced SA as military practitioners C2 tactical operations.  Thus, 

this study aims to further advance the development of RAPTOR by building on work 

previously conducted.  This study will also aims to validate the interface’s ability to 

increase total system performance as users deal with uncertainty and novel situations 

inherent in dynamic and fluid environments. 

F. HYPOTHESES 

The literature review has uncovered many important questions concerning the 

ability of interfaces to increase human performance during C2.  Though much of the 

concepts previously described yield multiple interesting topics that could be explored in 

considerable depths, the most relevant questions have been narrowed to those pertaining 

to this study’s specific research objectives.  Accordingly, the alternative hypotheses 

generated from those questions are as follows: 

 Ha1:   The RAPTOR interface leads to better levels of SA than the  

U.S. Army’s FBCB2 interface. 

 Ha2: The RAPTOR interface supports better decision-making processes 

than the U.S. Army’s FBCB2 interface. 
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 Ha3:  The RAPTOR interface requires less cognitive workload than the 

U.S. Army’s FBCB2 interface. 



III. METHOD 

A. EMPIRICAL STUDY OVERVIEW 

1. Research Design 

A controlled laboratory experiment was used to assess military decision-maker 

performance while performing critical battlefield activities (e.g., acquiring and analyzing 

critical knowledge on the effects of terrain; assessing anticipated enemy actions on 

friendly force operations).  This study was a 2 x 2 factorial mixed subjects design 

comparing two interfaces (RAPTOR and Baseline) and two tactical scenarios (attack and 

raid).  Participants were randomly assigned to four groups (RAPTOR Group 1, RAPTOR 

Group 2, Baseline Group 1, and Baseline Group 2).  Each group conducted both tactical 

scenarios using only one type of interface (i.e., groups were blocked against one type of 

interface).  The Tactical scenario–interface combinations were counterbalanced to control 

for an order effect.  Figure 17 illustrates the design used for this study. 

 

 

Figure 17.   Research Design Example. 

Participants were shown U.S. Army BN-level tactical operation displays driven 

by an interactive simulation technology, the Distributed Dynamic Decision-Making 

(DDD 4.0).  Each tactical scenario lasted 25 minutes in duration.  Participants played the 

role of a BN commander, and performed various activities associated with the C2 of 

multiple manuever elements.  Numerous measurements were collected to gain insight 

into participant decision-making processes, SA, and cognitive workload as they 

progressed through the scenarios.  
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2. Study Approach 

As previously stated, when determining an interface’s effectiveness at assisting 

the warfighter with maintaining SA and decision-making processes, one must employ a 

model that includes both human and machine.  Accordingly, this study used the DMSC 

(Miller & Shattuck, 2006) as the theoretical framework to determine if RAPTOR 

enhanced human performance during the C2 of tactical operations.  Furthermore, this 

study also proposes the Tactical Rating of Awareness for Combat Environments 

(TRACE) tool (see Figure 18) as an evaluation strategy to determine levels of SA for the 

participants. 

The DMSC model is composed of six ovals.  The first three ovals represent 

technological contributions to the model, while the remaining three ovals represent 

human contributions to the model.  Thus, data were captured for all six ovals during the 

study.  Data from the RAPTOR interface representations and the DDD 4.0 simulation 

technology populated the first three ovals, while TRACE, CCIR, and critical event 

measures captured human data for the last three ovals.  Table 1 lists the measures used to 

populate the ovals. 

Table 1.   Measures For Populating DMSC Ovals (After:  Read, 2007). 

  

3. Independent Variables 

 Interface Type – RAPTOR and Baseline. 

 Tactical Scenarios – attack and raid. 
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4. Dependent Variables 

 TRACE Scores – accuracy of participant responses to periodic situation 

reports (SITREP) initiated by researchers to query for levels of SA. 

 TRACE Latency – the elapsed time from when the researcher requests the 

participant to send a SITREP to when the participant answers all line  

item entries. 

 Critical Event Latency – the elapsed time from when decision point 

criteria are met to when the participant announces decision point criteria 

have been met. 

 Critical Information Latency – the elapsed time from when a commander’s 

critical information requirement (CCIR) is available to when the 

participant reports the CCIR answer. 

 Critical Information Scores – accuracy of participant responses to  

CCIR questions. 

 Continuous Subjective Workload Assessment Technique – participant 

periodic entry of self-reported workload throughout the tactical scenarios. 

 Total Requests for Information – total number of times a participant refers 

to an operation order during an entire scenario. 

5. Study Setting 

Data collection occurred at the Naval Postgraduate School (NPS) in Monterey, 

California.  NPS contains a large pool of available U.S. Army Officers assigned to 

Maneuver, Fires, and Effects (MFE) basic branches.  Officers assigned to MFE branches 

can be considered as experienced practitioners of C2 since they receive professional 

education and extensive training on how to effectively operate the C2 system, and also 

routinely perform C2 activities during tactical operations. 

6. Participants 

Participants consisted of 16 male U.S. Army Officers with an average age of 36.8 

years.  Fourteen participants held the rank of 0-4, and two held the rank of 0-5.  Fifteen 



 54

Officers had combat experience in either Iraq or Afghanistan, with an average time of 15 

months in combat (SD = 8.6).  Eight participants had operational experience with military 

operations other than war (MOOTW), with an average time of 4 months (SD = 4.3).  The 

average number of deployments to combat zones and MOOTW was 1 (SD = 8.8).  

Fifteen participants conducted mission rehearsal exercises at a Combat Training Center 

(CTC).  The average number of rotations to a CTC was 3 (SD = 1.8).  Twelve 

participants had previous experience using a C2 interface (i.e., FBCB2) either during 

tactical exercises or combat operations.  Participants had no previous experience with 

either the RAPTOR interface or the Baseline interface.  All participants had previous 

command experience, with an average of 29 months time in command (SD = 11.0).  All 

participants had normal (or corrected) visual acuity and color perception.  Participants 

were not given monetary compensation for their participation. 

B. APPARATUS 

1. Instrumentation 

All experimental events were controlled by identical computers (Dell Precision 

M6300 laptops, Limerick, Ireland, 777 MHz), with identical color displays (Dell 

Computer, Limerick, Ireland, UltraSharp, 17”, 1920 X 1200 resolution, Model WUXGA) 

with built-in standard QWERTY keyboards and Dell 2-Button USB Optical Mouse with 

scrolling wheel. 

As stated earlier, tactical scenarios were presented to participants using the DDD 

4.0 internet based simulation technology.  Simulations were controlled through Aptima 

Inc.’s interactive client server.  Scenario environmental conditions, friendly, and enemy 

activities were controlled by DDD 4.0’s Agent Application Program Interface (API) 

intelligence algorithms.  These algorithms standardized discrete activities to ensure 

participants encountered the same events during all scenarios. 

Digital audio and video recording devices were used to collect participant data 

during all experimental events.  Video recording devices consisted of 3 communication 

cameras (Canon, Oita, Japan, 16x zoom, 440,000 effective pixels, 47.5o to 3o view angle, 

4.0 to 64.0mm minimum focus, Model VC-C4) that transmitted recorded video images 
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directly to researcher laptops via Cat 5 Ethernet connections.  Audio recording devices 

consisted of portable digital voice recorders (Olympus, Tokyo, Japan, WMA recording 

format, -70 dBv input level, 44.1 kHz sampling frequency, Model DS-50).  Recorded 

video data were transferred to DVDs, and recorded audio file MP3 data were transferred 

onto researcher laptops for further analysis. 

Participants were also provided with hard copies of the tactical operations orders, 

blank copies of the TRACE tool, a copy of the CCIR reporting format, a copy of the 

critical event reporting format, additional notepaper, a pen, and a calculator.  Researchers 

collected completed TRACE tools and reporting formats at the conclusion of each 

experimental event for further analysis. 

2. Materials 

a. TRACE Tool 

Since military practitioners are accustomed to gathering and disseminating 

friendly and enemy force assessments via situation report (SITREP) during tactical 

operations, the TRACE tool was developed to provide researchers with a method for 

minimizing obtrusive data collection.  The TRACE tool is flexible enough to be applied 

to various types of experiments or training (simulated and/or field settings) that aim to 

measure levels of military practitioner SA during tactical situations.  It was developed 

using different U.S. Army reports listed in FM 101-5-2 (1999).  These reports were 

refined for data collection purposes, and combined into a standard U.S. Army SITREP 

format (see Figure 18). 



 

Figure 18.   TRACE Tool Overview. 

The TRACE tool was used to populate Ovals 4 to 6 of the DMSC with 

human SA data.  TRACE measurements include timed responses to queries for specific 

information, and the accuracy of the information provided.  As can be seen in Figure 18, 

queries for numerous types of friendly and enemy information are grouped under seven 

specific line item entries.  This format provides participants with a logical sequence for 

reporting key pieces of information as they attempt to make sense of the battlefield 

situation.  Lines 1-3 pertain to the historical activities of individual friendly and enemy 
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elements on the battlefield.  Participant responses to these queries provide information on 

Level 1 SA for populating Oval 4 (Perception).  Lines 4 to 6 pertain to the current status 

of friendly and enemy capabilities.  Participant responses to these queries provide 

information on Level 2 SA for populating Oval 5 (Comprehension).  Line 7 pertains to 

immediate future friendly actions based on the overall battlefield situation.  Participant 

responses to these queries provide information on Level 3 SA for populating  

Oval 6 (Projection). 

To maintain consistent temporal references, TRACE measures were synchronized 

to simulation time and captured by the laptop computers presenting the simulations.  

TRACE measures were also captured by video recording devices focused on interface 

screens.  Participants annotated their responses to line item entry queries onto hard copy 

TRACE tools, while their voice responses to the queries were captured by audio 

recording devices. 

b. Commander’s Critical Information Requirements (CCIR) 

CCIR is a comprehensive list of information requirements identified by 

the commander to facilitate timely IM and the decision-making process that affect 

successful mission accomplishment (Department of the Army, 2004).  CCIR is 

essentially a list of questions pertaining to enemy activities, friendly activities, and the 

environment that must be answered to enable the commander to maintain SA, project 

future activities, and make timely decisions (Department of the Army, 2003).  As such, 

CCIR is normally comprised of two key subcomponents: priority intelligence 

requirements (PIR) and friendly force information requirements (FFIR). 

Specific CCIRs (containing both PIRs and FFIRs) pertaining to each 

tactical scenario were provided to the participants (see Figures 19 and 20).  As 

highlighted previously, scenario environmental conditions, friendly, and enemy activities 

were controlled by DDD 4.0’s API intelligence algorithms which populated DMSC Ovals 

1-2.  Furthermore, these conditions and activities were presented to participants as 

graphical representations in the various interface displays which populated Oval 3.  

Participant temporal recognition of CCIR activities as they transpired on the battlefield 



were used to further populate Oval 4 (perception).  Participant responses to CCIR queries 

were used to further populate Oval 5 (comprehension). 

 

 

Figure 19.   CCIR List and Report Format for Attack Scenario. 
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Figure 20.   CCIR List and Report Format for Raid Scenario. 

To maintain consistent temporal references, CCIR events were 

synchronized to simulation time, and were captured by both the laptop computers 

presenting the simulations and by video recording devices.  Participants annotated CCIR 

queries onto CCIR reporting formats, and their voice responses were captured by audio 

recording devices. 

c. Decision Points 

As discussed earlier, FM 6-0 (2003) describes decision making as 

selecting the one most favorable COA to accomplish a mission.  Therefore, participants 

were provided three preplanned COAs and were expected to select one of them, based on 
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their comprehension of the friendly and enemy force situation and activities (see Section 

D.1.).  The decision to choose a specific COA was tied to critical event criteria listed in 

decision support matrixes that were provided to the participants as an annex in the tactical 

OPORDs (see Appendices A and B). 

The point in time and space in which a participant was required to execute 

a specific COA was represented by a graphical control symbol known as a decision point 

(DP) (see below Section C.1.).  FM 101-5 (1997) describes DPs as critical events or 

locations on the battlefield where tactical decisions are required during mission 

execution.  However, DPs do not dictate the decision to be made, only that a decision 

must be made, as well as when and where it should be made in order to have the 

maximum impact on friendly and/or enemy COAs. 

Consequently, the availability of multiple COAs whose selection are 

dependent upon a participant’s perception of critical events (or cues) represented by 

technological agents in a time constrained and uncertain environment is consistent with 

the NDM characteristics taken into account by the DMSC model (see Chapter II.3.C.).  

Critical events were controlled by DDD 4.0’s API intelligence algorithms which 

populated Ovals 1 to 2, and were presented to participants as graphical representations in 

the various interface displays which populated Oval 3.  Participant temporal recognition 

of these critical events were used to further populate Oval 4 (Perception), while their 

selection of a specific COA was used to further populate Oval 5 (Comprehension) and 

Oval 6 (Projection).  Finally, COA selections provided insights for how participants 

expected events to unfold, and the accuracy of these decisions was represented by 

feedback loops from Oval 6 to Oval 2. 

To maintain consistent temporal references, critical events were 

synchronized to simulation time, and were captured by both the laptop computers 

presenting the simulations and by video recording devices as well.  Participants annotated 

critical event queries onto DP reporting formats, and their voice responses were captured 

by audio recording devices. 



d. Workload 

Adams et al. (1995) argues that acquiring and maintaining high levels of 

SA must be appreciated as an integral part of the operator’s mental workload.  Wickens 

(2008) further explains that an increase in workload can divert scarce cognitive resources 

from maintaining SA, while a well-designed usable display can both reduce workload 

and increase SA.  However, Van Orden (2001) also suggests that a reduction in workload 

can lead to complacent behavior caused by increased operator reliance on technology and 

automation, which can also result in a loss of SA. 

Accordingly, an estimation of workload commonly referred to as the 

continuous subjective workload assessment technique (C-SWAT) was incorporated to 

elicit participant perceived levels of workload during the experiment.  The C-SWAT 

utilized is a simple, non-obtrusive workload estimation technique borrowed from 

previous workload studies conducted by Van Orden (2001).  Like those studies, the 7 

-point scale used in this study was also anchored only by the descriptors shown in  

Figure 21.  The workload estimation appeared on the top portion of participant displays 

every 5 minutes during the 25-minute tactical scenarios.  Audio prompts were 

incorporated to alert participants of the workload estimate’s appearance.  Participants 

entered their perceived level of cognitive workload once prompted. 

 

 

Figure 21.   Subjective Workload Estimation Prompt. 

Researchers also annotated the number of times participants were forced 

to divide their attention between monitoring interface displays and accessing additional 

information located in hard copy tactical OPORDs as another simple workload measure. 
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C. INTERFACES 

Interface displays, menus, tools, options, data representations, and other various 

graphical screen shots described previously in Chapter II.D (RAPTOR design), and 

during the following description of the baseline interface, were used to populate  

DMSC Oval 3. 

1. RAPTOR Interface 

Chapter 2 provides detailed explanations of the displays and functions associated 

with the RAPTOR interface.  Participants using RAPTOR were permitted to use most of 

the interface tools and options previously described, and to incorporate data provided by 

the various displays as they executed C2 activities during the tactical simulations.  

However, participants were unable to manipulate synchronization points represented in 

the spatial and temporal synchronization displays.  Participants were also unable to 

manipulate the “Preview” mode to view pre-planned actions in time and space, but were 

able to access the “Review” mode to view historical activities.  Additionally, friendly 

combat resource icons were held constant at the company level hierarchy, and the 

magnification reticule was disabled.  Holding these tools constant standardized friendly 

force actions across each simulation, which ultimately enabled researchers to better 

control for unanticipated outcomes and to gather more meaningful measurements. 

2. Baseline Interface 

An alternative interface (Baseline) was developed in order to compare participant 

performance with the RAPTOR interface.  The baseline interface was modeled after the 

U.S. Army’s FBCB2 interface.  Although the baseline interface’s appearance, displays, 

tools, and options are not exactly the same as those provided by FBCB2, their 

functionality and informational structures are comparable (see Figure 22).  For instance, 

like FBCB2, the baseline interface requires users to operate various command lines and 

pull-down menus to access different types and levels of data.  Also like FBCB2, much of 

the data represented by the baseline interface are presented in alphanumeric  

(i.e., text) formats. 



 

Figure 22.   Baseline Interface (main screen). 

A more concrete example of these similarities is illustrated by the activity 

sequence required to obtain combat resource values (e.g., percent of available fuel) at the 

BN level when using the baseline interface.  This sequence is analogous to the activity 

sequence required when using FBCB2 as described by Talcott et al. (2007).  Combat 

resource data can be obtained by activating the “FIPR” reports button located on the right 

side of the screen (see Figure 22).  The button is clicked to access the “FIPR” menu, 

which provides a series of reports categorized by precedence and “filed” under flash, 

immediate, priority, and routine (FIPR) tabs.  Combat resource reports (i.e., LOGSTAT 

Reports) are accessed by clicking on the “Routine” tab (see Figure 23). 
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Figure 23.   FIPR Menu for Baseline Interface. 

Detailed combat resource data can be obtained by activating a Company level 

report (e.g., CO B) listed under the routine tab, which produces a pre-formatted report 

screen containing an alphanumeric data sheet (see Figure 24).  The desired parameter 

value must be located within the alphanumeric data and either manually recorded or 

remembered.  This process must then be repeated for each Company element within the 

Battalion level organization, followed by the computation of the aggregate parameter 

value (either manually or mentally). 

 

 

Figure 24.   Logistical (LOGSTAT) Report Example (e.g., CO B). 
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FBCB2 enables users to generate and send numerous types of reports and “long 

form” combat messages (i.e., e-mails) to multiple platforms networked within the tactical 

internet.  FBCB2 users can also determine the level of precedence for each report and 

combat message they send.  However, according to Talcott et al. (2007), field studies of 

the FBCB2 interface conducted by the Center for Army Lessons Learned (CALL) 

indicate that commanders and their staffs tend to become inundated by the amount of data 

presented and the amount of effort required to interpret these data.  This is particularly 

true during combat situations when high stress and heavy workloads are imposed.  

Therefore, for simplicity purposes, the baseline interface in the present study provides 

participants with only four types of tactical reports “generated” by subordinate units.  

Furthermore, each of these reports are generated based on predetermined events, 

categorized by fixed levels of precedence, organized by unit and reporting time, and 

displayed in standardized formats to provide participants with a more efficient process for 

selecting, interpreting, and integrating the data provided.  Figure 25 illustrates the fixed 

levels of precedence categories and the predetermined generating events for each tactical 

report.  Figure 26 illustrates the standardized alphanumeric formats used for each  

tactical report. 

 

 

Figure 25.   Tactical Report Methodology. 
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Figure 26.   Standardized Report Formats for the Baseline Interface. 

The RAPTOR and baseline interface designs are substantially different, but their 

informational content is equivalent.  In other words, much of the data and hierarchical 

relationships represented by the RAPTOR interface are also represented by the baseline 

interface, though these representations are presented in different formats and styles.  This 

informational equivalence ensured that comparisons between the RAPTOR and baseline 

interface were more meaningful.  The following list briefly summarizes baseline interface 

functions, tools, and displays: 

 Situational Awareness Display (see Figure 22) – provides 

representations for terrain, friendly unit icons, and enemy icons in the 

same manner as RAPTOR’s Spatial Synchronization Display.  The 

primary difference between these two displays is that the friendly unit 

icons presented in the baseline display do not change colors corresponding 

to their categorical status. 

 FIPR Reports (see Figure 26) – Contact reports and SPOTREPs provide 

users with enemy specific data such as equipment type (e.g., tanks and 

APCs), location, and activity.  E-BDA reports provide data on disabled 

enemy resources by specific type.  These three reports provide 

alphanumeric data that is equivalent to the enemy data represented in 

RAPTOR’s Enemy Resource Display.  Furthermore, the LOGSTAT 

reports provide detailed alphanumeric data on the same resources that are 

represented in RAPTOR’s Friendly Combat Resource Display.  The 
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 Command Directive Button (see Figure 22) – clicking on the command 

directive button activates a screen with radio buttons that enables users to 

select pre-planned, alternate COAs (see Figure 27).  This function is 

similar to the COA buttons located on the bottom of RAPTOR’s screen.  

However, unlike RAPTOR, baseline interface users are not able to 

preview alternative COAs.  Clicking and executing a COA radio button in 

the command directives menu directs subordinate elements to conduct the 

COA selected. 

 Applications Button (see Figure 20) – clicking on the applications button 

activates a screen with radio buttons that enable users to display enemy 

and friendly weapon envelopes (see Figure 28).  This function is similar to 

the control buttons located on the top of RAPTOR’s screen. 

 

 

Figure 27.   Additional Baseline Interface Options and Tools. 

Conversely, RAPTOR provides certain forms of data that are not represented by 

the baseline interface.  Examples of these are the temporal synchronization display, the 

alternative COA review buttons, and the force ratio display.  However, these data are 

provided to participants in each tactical scenario’s OPORD.  Specifically, Annex C for 

 67



 68

each OPORD provides a synchronization matrix (see Appendices A and B) that meshes 

subordinate unit tasks with higher-level purposes that assists users with anticipating and 

coordinating combat activities.  Annex C for each OPORD also provides alternative COA 

concept sketches (see Appendices A and B) that enables users to review preplanned, 

alternative COAs.  Furthermore, force templates depicting the enemy’s most likely COA 

(MLCOA) and most dangerous COA (MDCOA) are located in each OPORD’s situation 

paragraph (i.e., Paragraph 1).  Combining these enemy templates with the friendly force 

composition illustrated by Task/Organization charts located at the beginning of each 

OPORD enable users to calculate force ratio estimates (see Appendices A and B). 

D. TACTICAL SIMULATION MODELS 

Three tactical scenarios were developed for this study.  The attack scenario is a 

simulated conventional high intensity conflict in desert terrain and was based on training 

exercises conducted at the U.S. Army’s National Training Center at Fort Irwin, 

California.  The raid scenario is a simulated counter-insurgency (COIN) low intensity 

conflict in urban terrain and was based on combat operations routinely conducted by  

U.S. Army forces in Iraq and Afghanistan.  The defense scenario is a conventional high 

intensity conflict in desert terrain and was developed for training purposes only.  The 

intent for incorporating the defense scenario was to familiarize participants with the 

functions, tools, and displays provided by either the RAPTOR or baseline interface while 

they conducted C2 for a practice trial.  The following sections provide a detailed 

description for the two scenarios (attack and raid) utilized during experimental events.  

The friendly and enemy activity data, resource values and parameters, algorithms, and 

representations described in this section were used to populate DMSC Ovals 1-3. 

1. Friendly Situation 

The friendly forces represented in each scenario consisted of a Battalion-sized 

element configured as a Task Force (TF).  The TF maintained the same task-organization 

for each scenario, and consisted of four company teams (TM) and two specialty platoons 

(see Figure 28).  TM A was mixed with eight Abrams tanks and four Bradley Fighting 



Vehicles (BFV).  TM B was pure with 12 Abrams tanks.  TM C (mixed) contained eight 

BFVs and four Abrams tanks.  TM D (pure) contained 12 BFVs.  There were three 

platoons (Platoons 1, 2, and 3) in each TM, and each platoon consisted of four tactical 

vehicles (either all tanks or BFVs).  The two specialty platoons remained under TF 

control and included a Mortar platoon consisting of four 120mm self-propelled mortars, 

and a Scout platoon equipped with four High Mobility Multipurpose Wheeled Vehicles 

(HMMWV). 

 

 

Figure 28.   Friendly Force Task-Organization Chart. 

The TF mission during the attack scenario was to destroy enemy forces located 

within the TF’s battlespace.  Tactical tasks included locating the forward edge of the 

enemy’s obstacle belt, establishing an attack by fire position with TM D, establishing 

multiple breach lanes through the enemy obstacle belt, conducting a forward passage of 

lines, and completing the destruction of enemy forces within a specified objective. 

Three possible friendly COAs were planned for the attack scenario.  The 

implementation of a given COA was dependent upon specific critical event criteria being 

met at a DP.  The first TM to establish a breach lane through the enemy obstacle belt was 

the DP criteria for the attack scenario (see Figure 29).  COA A (the default COA) was 

predicated on TM B establishing the first breach lane, and planned for TM D to assault 

the objective from the center.  COA B (the preferred COA) was predicated on TM C 

establishing the first breach lane, and planned for TM D to assault the objective from the 

south.  COA C was predicated on TM A establishing the first breach lane, and planned 

for TM D to assault the objective from the north. 
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Figure 29.   Courses of Action for Attack Scenario. 

The TF mission during the raid scenario was to disrupt enemy insurgent 

operations within the fictional town of Al Icia Maria.  Tactical tasks included conducting 

raids against multiple specified objectives, destroying insurgent activity centers, clearing 

numerous avenues of approach, neutralizing a high value individual (HVI), and 

exfiltrating from the battlespace. 

Three possible friendly COAs were also planned for the raid scenario.  The DP 

criteria for implementing a given COA in this scenario was dependent upon the HVI’s 

location within the battlespace (see Figure 30).  COA A (the default COA) was 

predicated on the HVI being located at Objective Dylan and required TM D to neutralize 

the HVI while TM B completed the enemy disruption by raiding Objective Bruce.  COA 

B was predicated on the HVI not being located within Al Icia Maria, and required TM C 
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to complete the enemy disruption by raiding Objective Bruce.  COA C (preferred COA) 

was predicated on the HVI being located in the vicinity of Objective Bruce, and required 

TM A to neutralize the HVI at Objective Bruce. 

 

 

Figure 30.   Courses of Action for Raid Scenario. 

Both scenarios portray the friendly missions as ongoing combat operations.  Thus, 

the TF had to execute their assigned tactical tasks with reduced combat resources.  This 

constraint required participants to manage resource expenditures, and to maintain 

awareness of combat resource statuses down to the CO level to ensure goals were 

achieved.  Table 2 depicts the initial and projected categorical resource statuses at the CO 

and PLT levels, and the initial parameter values established for individual combat 

resources at the beginning of both scenarios. 
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Table 2.   Combat Resource Chart for Tactical Scenarios (Friendly Forces). 

 

 

As can be seen in Table 2, friendly combat resources consisted of tanks, BFVs, 

mortars, HMMWVs, ammunition, and fuel.  Four of these parameters (tanks, BFVs, 

mortars, and HMMWVs) were computed as a simple percentage of the full complement.  

For simplification purposes, individual unit commander and executive officer vehicles 

were not included in the scenarios.  Ammunition was computed as the number of 

potential armored vehicle and prepared defensive position kills (120mm tank rounds, 

120mm mortar rounds, anti-tank missiles, 25mm rounds, and 40mm grenades).  Fuel was 

computed as the range in kilometers, and consumption rates were based on each 

individual vehicle’s fuel economy. Though RAPTOR is also designed to consider 

humans as a separate combat resource, personnel were included with the vehicles, and 

crewmembers were considered expended as friendly vehicles were destroyed. 

2. Enemy Situation 

Unlike the friendly forces, enemy force composition and capabilities were not the 

same for the two scenarios.  This was due to the different operational environments and 

conditions used to create the simulation models (conventional high intensity conflict in 
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open desert terrain vs. COIN low intensity conflict in urban terrain).  The enemy also 

faced numerical and technological disadvantages on both battlefields.  Therefore, enemy 

forces employed other types of “low-tech” weaponry to close these disadvantageous 

“gaps” in both scenarios. 

The enemy force represented in the attack scenario consisted of a CO(+) sized 

element.  Their composition included three PLTs of infantry fighting vehicles (BMP-2) 

reinforced by one PLT of T-72 tanks.  Each PLT consisted of three tactical vehicles 

(either all tanks or BMP-2s).  The enemy’s command vehicle (BMP-2) was also present 

on the battlefield.  Figure 31 illustrates the enemy composition for the attack scenario. 

 

Figure 31.   Enemy Composition Diagram (Attack Scenario). 

The enemy mission during the attack scenario was to deny friendly forces the 

ability to attack west.  The enemy conducted a defense in depth from dug-in fighting 

positions to increase their survivability.  They employed their reserve T-72 tank platoon 

on the battlefield and conducted a counter-attack into the friendly force’s exposed 

northern flank (see Figure 32).  The enemy also established a large complex obstacle belt 

consisting of antitank mines and concertina wire to reduce friendly force  

numerical superiority. 
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Figure 32.   Enemy Most Dangerous COA (Attack Scenario). 

The enemy force represented in the raid scenario also consisted of a CO(+) sized 

element.  However, unlike the attack scenario, the enemy in the raid scenario is an 

unconventional insurgent force operating either as individuals, or in small teams 

consisting of 3-4 personnel.  Lone enemy elements employed suicide car bomb attacks 

using vehicle borne improvised explosive devices (VBIED).  Enemy teams conducted 

anti-armor ambushes and limited indirect fire attacks.  Figure 33 illustrates the enemy 

composition for the raid scenario. 

 

Figure 33.   Enemy Composition Diagram (Raid Scenario). 
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The enemy mission during the raid scenario was to enable the HVI to exfiltrate 

from the battlespace by delaying friendly force penetration into insurgent support zones.  

The enemy conducted multiple anti-armor ambushes from prepared fighting positions 

located within several structures to increase their survivability.  The enemy attacked 

friendly forces with VBIEDs and indirect mortar fires (see Figure 34).  The enemy also 

employed anti-tank mines and numerous improvised explosive devices (IED) (i.e., 

roadside bombs) to reduce friendly force numerical and technological superiority. 

 

 

Figure 34.   Enemy Most Dangerous COA (Raid Scenario). 

Enemy combat resources represented in RAPTOR’s enemy combat resource 

display consisted of tanks and BMP-2s for the attack scenario.  VBIEDs and anti-armor 

ambush teams were represented in the display for the raid scenario.  For simplicity 
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purposes, VBIEDs were given T-72 tank force equivalence, and the anti-armor ambush 

teams were given BMP-2 force equivalence.  IEDs and antitank mines possessed 

equivalent lethality.  However, enemy ammunition and fuel values were not included. 

3. Other Simulation Data 

Detailed friendly and enemy capability data (e.g., weapon ranges, weapon re-load 

times, vehicular speeds, etc.) were added to API intelligence algorithms to better replicate 

actions and conditions typically encountered in the physical environment.  Vehicular fuel 

capacity, fuel economy, and ammunition combat loads were also added to more 

accurately calculate combat resource parameter values and expenditure rates (see  

Table 3). 

Table 3.   Capability Data Matrix (Friendly and Enemy). 
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Probability kill (Pk) data was also added to the tactical simulation models.  As can 

be expected, friendly forces were more survivable and lethal than enemy forces in the 

tactical scenarios.  However, the Pk values established for enemy forces were only 



slightly less than the Pk values established for friendly forces.  This helped to better 

balance friendly versus enemy survivability and lethality.  Pk algorithms consisted of a 

simple calculation for each individual weapon system’s probability hit * each tactical 

vehicle’s probability damage expectancy (Pk = Ph * Pde).  Furthermore, a random number 

generator for kinetic exchanges between friendly and enemy vehicles was also 

incorporated to ensure one force did not possess an overwhelming survivability-lethality 

advantage over the other force.  Table 4 illustrates the Pk values established for the 

tactical simulation models. 

Table 4.   Probability Kill Matrix (Friendly & Enemy). 

 

 

E. PROCEDURES 

Participants completed three sessions (training, trial event 1, and trial event 2) on 

successive days.  As stated earlier, participants were randomly assigned to four groups 

(RAPTOR Group 1, RAPTOR Group 2, Baseline Group 1, and Baseline Group 2).  

Groups were blocked on one type of interface.  The Tactical Scenario-Interface 

combinations were counter-balanced to minimize order effects.  The following sections 

illustrate how each session was conducted. 
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a. Selection & Training 

A convenience sample of volunteers was recruited from various 

departments within NPS.  Each volunteer was provided with a brief description of the 

study and asked to complete at demographic survey (see Appendix C).  Those volunteers 

who answered “yes” to colorblindness (question 6) were not included in the study.  Upon 

completing the demographic survey and the consent form, participants were randomly 

assigned to an interface group, and scheduled for a training session. 

Group training sessions (i.e., RAPTOR Interface training and Baseline 

Interface training) were conducted prior to the experimental trails.  Participants only 

attended training for the type of interface to which they were assigned.  Each training 

session lasted approximately one hour, and all participants received an oral tutorial of 

their respective interface, and a written and oral description of the simulations.  Oral 

tutorials and descriptions were scripted to ensure consistency of instruction between the 

different groups.  The tutorials familiarized participants on the menus, displays, tools, and 

functions offered by their assigned interface to minimize learning effects during the trials.  

Researchers conducted the tutorial using a pre-recorded PowerPoint presentation 

displayed by a 55-inch flat panel liquid crystal display. 

Following the tutorial, participants conducted a practice tactical scenario 

(i.e., defense scenario) using their assigned interface to further minimize learning effects.  

Participants were given sufficient time to become comfortable with manipulating the 

various tools provided by their specific interface. 

Once participants completed the practice scenario, researchers 

administered a brief knowledge test related to specific display options, tools, graphs, 

charts, etc. to ensure each participant retained the knowledge required for proficient use 

of their assigned interface type (see Appendix D & E).  Proficiency was defined as a 

perfect score (100%) with every question answered correctly.  Those participants who 

failed to score a 100% were provided with an opportunity to receive further training and 

to retake the knowledge test until they were proficient. 

Upon successful completion of the knowledge test, participants were 

scheduled for their first trial.  Participants were also provided with an advanced hard 
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copy of the OPORD pertaining to the initial tactical scenario they would encounter to 

ensure they had adequate time to familiarize themselves with the scenario and to 

formulate any questions prior to conducting the trial. 

b. Experimental Sessions 

Participants conducted trials on an individual basis.  Researchers provided 

the participant with a tabbed copy of the tactical OPORD, the TRACE tool, report 

formats, other associated materials, and general instructions for the trial once they arrived 

at the lab.  Participants were given the opportunity to review the OPORD and receive 

clarification on mission specifics and anything else related to the conduct of the scenario.  

Participants then provided researchers with a mission back brief to ensure they 

understood the mission, commander’s intent, information requirements, and key tasks to 

be executed during the simulation.  Upon successful completion of the back brief, the 

participants conducted the 25-minute tactical scenario. 

Participants were queried for specific levels of SA during three separate 

periods within the tactical scenarios.  Each query was initiated by a pre-recorded audio 

prompt requesting a SITREP.  The simulation paused at the beginning of the prompt, and 

participants were alloted five minutes to collect information for as many TRACE line 

item entries as possible.  The simulation remained paused until participants reported 

answers for the line item entries they were able to complete.  Participants were able to 

access data from the various interface displays and menus during the pauses.  The 

purpose for these pauses was to enable participants to concentrate their efforts on 

collecting, integrating, and reporting queried information instead of being forced to 

divide their attention between preparing TRACE responses while also trying to monitor 

ongoing activities occuring on their screen.  Upon completion of the SITREP, 

participants rated their perceived level of accuracy between 0% to 100% for their 

TRACE line item answers, then resumed the simulation by selecting the “done” button 

located on the bottom of their screen. 

Participants were instructed to answer specific CCIRs as events transpired 

in the simulations.  Each scenario contained four discrete CCIR activities that occurred at 
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various times, phases, and locations throughout the tactical scenarios.  Participants 

annotated and reported the activities once they perceived the cues.  Unlike the TRACE 

queries, the simulations were not paused for CCIR reporting. 

Participants were also instructed to report critical event criteria linked to 

DPs in the tactical scenarios.  Each scenario contained one DP tied to three pre-planned 

COAs.  Unlike the CCIR protocol described earlier, participants were not required to 

report each individual critical event as they occurred, but annotated and reported the 

decision made at a DP.  In other words, decisions at a DP reflected participant 

comprehension for how the collective occurrence of critical events impacted the friendly 

and enemy situation, as well as their projection for how they expected future events to 

unfold.  Participants simultaneously (or near simultaneously) executed the COA by 

selecting the corresponding COA button on their screen.  Like the CCIR reporting, 

simulations were not paused during critical event decision reporting and COA selection.  

Critical event matrixes pertaining to each tactical scenario were provided to the 

participants as an annex in the tactical OPORDs (see Appendices A and B). 

As discussed earlier, participants were asked to enter their perceived level 

of cognitive workload on the subjective workload scale when prompted.  The scale was 

presented every five minutes during each 25-minute scenario, and remained active for  

30 seconds.  If a participant failed to enter their perceived workload within the 30 

seconds allotted, the scale disappeared from the screen and the participant was assigned a 

“very high” (i.e., 7) score for that estimation period.  The rationale behind this scoring 

technique was based on an assumption that the participant was too busy to momentarily 

divert their attention toward the estimation scale.  The subjective workload estimation 

scale was presented to participants even when the simulation was paused for the TRACE 

queries to maintain consistency. 

The OPORDs used for the experimental events were packaged in a three 

ring binder and tabbed for quick access to key information.  Participants were allowed to 

reference an OPORD at any time during the scenarios, but were instructed to close the  
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binder after they accessed the information of interest.  Researchers annotated the number 

of times participants referenced an OPORD during a scenario as another simple  

workload measure. 

Participants were scheduled for the follow-on trial immediately upon 

completing the initial event.  The procedures for the subsequent trials were the same as 

those previously described. 

Immediately following the second trial, participants assigned to the 

RAPTOR groups were asked to complete a brief feedback survey (see Appendix F).  The 

purpose of this survey was to elicit participant concerns and perceptions about the 

different displays, options, and tools presented by the RAPTOR interface.  Participant 

feedback was used to compile helpful recommendations aimed at improving RAPTOR’s 

overall design and to develop a “way ahead” for future C2 interface studies. 
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IV. RESULTS 

The results consist of three parts:  (1) statistical analysis for TRACE 

measurements; (2) statistical analysis for critical information and event measurements; 

and (3) statistical analysis for workload measurements.  Summary and descriptive 

statistics are provided in parts a, b, and c for both the RAPTOR and Baseline interface 

user groups.  Inferential statistics are used in all parts to analyze differences between 

levels of situation awareness, decision making, and workload with respect to query 

accuracy, latency times, C-SWAT inputs, and total requests for information between the 

RAPTOR and Baseline interface user groups. 

A. STATISTICAL ANALYSIS FOR TRACE 

1. TRACE Latency 

Simulations were paused three times during each scenario for TRACE 

information collection and reporting.  Latency was measured in seconds by calculating 

when the simulation paused to when the participant reported answers for completed line 

item and sub-line item entries.  A t-test was performed to compare means between the 

two scenarios; there was no evidence that a learning effect had occurred as participants 

advanced from one trial to the next (t (30) = 1.06, p = .29).  Combined mean TRACE 

times (i.e., attack + raid) were calculated for both RAPTOR and Baseline groups.  The 

RAPTOR group responded more quickly with an overall mean latency time of 198.06 

seconds (SD = 35.77), as compared to an average latency of 362.79 seconds (SD = 32.71) 

for the Baseline group (see Table 5). 



 

Table 5.   Descriptive Statistics for TRACE Latency. 

 

 

Consistent with the research design, a mixed factor ANOVA was performed to 

test for differences within each group and between the two interfaces.  Test results found 

that TRACE latency for the RAPTOR group was significantly less than the Baseline 

group (F(1, 14) = 146.48, p < .0001) (see Table 6). 

Table 6.   ANOVA Results for Between Interface TRACE Latency Effects. 

 

 

Conversely, results also indicated that no significant differences existed within 

each group (p = .16), and did not yield evidence of a significant interface*scenario 

interaction (p = .71) (See Figure 35). 
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Figure 35.   Estimated Marginal Means for TRACE Latency. 

2. TRACE Accuracy 

TRACE scores were calculated as correct or incorrect for each line item and sub-

line item entry.  Correct line item and sub-line item entries were summed to determine 

overall TRACE scores.  Participants could score a maximum of 22 points per TRACE 

query if they answered all line item and sub-line item entries correctly.  Another t-test 

was performed to compare means between the two scenarios.  Results from this test also 

did not indicate a learning effect had occurred as participants advanced from one trial to 

the next (t (29) = -0.60, p = .56).  The RAPTOR group was more accurate than the 

Baseline group with an overall mean TRACE score of 21.54 (SD = 0.53).  In contrast, the 

Baseline group had an overall mean TRACE score of 11.87 (SD = 2.79).   The small 

standard deviations coupled with the medians and modes being relatively close to the 

means suggest a small amount of variance amongst the TRACE scores (see Table 7). 

Table 7.   Descriptive Statistics for TRACE Scores 
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Results from a mixed factor ANOVA found that TRACE scores for the RAPTOR 

group were significantly higher than Baseline group scores (F(1, 14) = 130.14, p < 

.0001) (see Table 8).  No significant differences were found within each group (p = .08), 

and the interface*scenario interaction was also not significant (p = .08) (see Figure 36). 

 

Table 8.   ANOVA Results for Between Interface TRACE Score Effects. 

 
 

 

 

Figure 36.   Estimated Marginal Means for TRACE Scores. 

B. STATISTICAL ANALYSIS FOR CRITICAL INFORMATION AND 
EVENTS 

1. CCIR Latency 

Four cues pertaining to critical information requirements were presented during 

each scenario.  Latency was measured in seconds from when the critical information was 

available to when the participant reported the CCIR answer.  A t-test was used to 

compare means between the two scenarios; there was no evidence of a learning effect as 
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participants advanced from one trial to the next (t (29) = 1.28, p = .21).  Combined mean 

CCIR times (i.e., attack + raid) were calculated for both RAPTOR and Baseline groups.  

The RAPTOR group had the lowest overall mean latency time of 38.14 seconds (SD = 

46.58) as compared to an average latency of 107.56 seconds (SD = 66.54) for the 

Baseline group (see Table 9). 

 

Table 9.   Descriptive Statistics for CCIR Latency. 

 

 

Researchers also performed a mixed factor ANOVA to test for differences within 

each group and between the two interfaces.  Test results found that CCIR latency for the 

RAPTOR group was significantly less than the Baseline group (F(1, 14) = 14.47, p = 

.002) (see Table 10). 

Table 10.   ANOVA Results for Between Interface CCIR Latency Effects. 
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Results from the ANOVA also indicated that no significant differences existed 

within each group (p = .64), and did not yield a significant interface*scenario interaction 

(p = .32) (See Figure 37). 



 

Figure 37.   Estimated Marginal Means for CCIR Latency. 

2. CCIR Accuracy 

CCIR cues were treated as discrete activities.  Answers for each of the four 

CCIRs presented per scenario were scored as either correct or incorrect. Thus, 

participants could score either 1 point per activity if they answered a CCIR query 

correctly or 0 points per activity if they answered a CCIR query incorrectly.  The four 

scores were summed for each scenario with total possible outcomes ranging between 0-4 

points.  The RAPTOR group had the highest overall mean CCIR score of 3.81 (SD = 

0.14) as compared to an average score of 2.13 (SD = 0.81) for the Baseline group.  Once 

again, the small standard deviations coupled with the medians and modes being relatively 

close to the means suggest a small amount of variance amongst the TRACE scores (see 

Table 11).  

Table 11.   Descriptive Statistics for CCIR Scores. 
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The data violated the normality assumption, thus a nonparametric permutation test 

was performed to compare outcomes between RAPTOR and Baseline groups.  The test 



consisted of a simulation using S-Plus statistical software.  During the simulation, 

observed samples (i.e., CCIR scores per participant) were randomly distributed between 

two groups of size eight 1,000 times to determine how often the re-sampled statistic of 

interest was as extreme as the observed value of -27.  Results of the simulation 

demonstrated a difference as extreme as (+/-) 27 only one time out of 1,000, thus 

enabling the researchers to infer a statistically significant difference existed between the 

two interfaces.  Figure 38 illustrates the difference of observed CCIR scores between the 

RAPTOR and Baseline interfaces. 

 

 

Figure 38.   Graph of RAPTOR & Baseline CCIR Scores 

3. Critical Event Latency 

One decision point, the critical event, was located within each scenario.  Critical 

event latency was measured in seconds from when all critical event criteria had been met 

at a decision point to when the participant selected a specific COA.  Combined mean 

CCIR times (i.e., attack + raid) were calculated for both RAPTOR and Baseline groups.  

The RAPTOR group had the lowest overall mean critical event latency time of 81.19 

seconds (SD = 63.01) as compared to an average latency of 94.27 seconds (SD = 32.63) 

for the Baseline group.  However, the large standard deviation coupled with the median 
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and mode being relatively far apart from the mean suggests a large amount of variance 

between times within the RAPTOR group (see Table 12). 

Table 12.   Descriptive Statistics for Critical Event Times. 

 

 

Furthermore, results from a mixed factor ANOVA found no statistical difference 

in critical event times between the two interfaces (F(1, 14) = .127, p = .73).  

Interestingly, test results did enable researchers to discover that a significant 

interface*scenario interaction existed (F(1, 14) = 7.868, p = .02) (see Figure 39). 

 

  

Figure 39.   Estimated Marginal Means for Critical Event Latency. 
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C. STATISTICAL ANALYSIS FOR WORKLOAD 

1. Continuous Subjective Workload Assessment Technique (C-SWAT)  

Perceived levels of cognitive workload data were produced from participant 

entries on a 7-point Likert scale (i.e., 1 = very low workload, 7 = very high workload) 

every 5 minutes during each scenario.  The RAPTOR group had the lowest overall mean 

C-SWAT entry of 2.53 (SD = 1.01) as compared to an average entry of 4.9 (SD = 1.00) 

for the Baseline group (see Table 13). 

Table 13.   Descriptive Statistics for C-SWAT Entries. 

 

 

Since C-SWAT scores were ordinal, a Mann-Whitney test was performed to 

examine differences in C-SWAT means between the RAPTOR and Baseline groups.  

Test results found that C-SWAT scores for the RAPTOR group was significantly less 

than the Baseline group during both the attack (z = -3.00, p = .003) and raid (z = -2.90, p 

= .004) scenarios (see Table 14). 

Table 14.   Mann-Whitney Results for Mean C-SWAT Entry Differences. 
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Figure 40 further illustrates C-SWAT entry differences by scenario between the 

two interfaces. 

 

Figure 40.   Average C-SWAT Scores for Baseline and RAPTOR Groups. 

2. Requests for Information (RFI) 

A tally was made for each time a participant referred to an OPORD during a 

scenario.  These tallies resulted in a total RFI count at the end of each scenario.  

Combined mean RFI counts (i.e., attack + raid) were calculated for both RAPTOR and 

Baseline groups.  The RAPTOR group had the lowest overall mean RFIs of 0.44 (SD = 

0.51) as compared to an average RFI tally of 6.25 (SD = 1.65) for the Baseline group.  

Once again, the small standard deviations coupled with the medians and modes being 

relatively close to the means suggest a small amount of variance amongst the RFIs (see 

Table 15). 

Table 15.   Descriptive Statistics for RFI Counts. 
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A mixed factor ANOVA was used to test for differences within each group and 

between the two interfaces.  Results found that the RAPTOR group had significantly 

fewer RFIs than the Baseline group (F(1, 14) = 194.67, p < .0001) (see Table 16). 

Table 16.   ANOVA Results for Between Interface RFI Count Effects. 

 

 

Results from the ANOVA also indicated that a significant difference did exist 

within groups (F(1, 14) = 13.51, p < .002), but did not yield a significant 

interface*scenario interaction (p = .10) (See Figure 41). 

 

 

Figure 41.   Estimated Marginal Means for RFI Counts. 

D. STATISTICAL ANALYSIS FOR PERCEIVED VS. ACTUAL ACCURACY 

Participants were asked to indicate their confidence they had in the accuracy of 

their TRACE line item answers during each simulation pause.  This was called 

“Perceived Accuracy” and ranged from 0% to 100%.  Actual accuracy data were 
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produced from the total number of line item entries answered correctly.  The RAPTOR 

group reported and achieved the highest overall mean accuracy percentage of 0.94 (SD = 

0.04) and 0.98 (SD = 0.02) respectively (see Table 17). 

Table 17.   Descriptive Statistics for Perceived and Actual Accuracy. 

 

 

Another mixed factor ANOVA was used to test for differences within each group 

and between the two interfaces.  Results found that perceived and actual TRACE 

accuracy percentages for the RAPTOR group was significantly higher than the Baseline 

group (F(1, 14) = 89.76, p < .0001) (see Table 18). 

Table 18.   ANOVA Results for Between Interface Confidence Effects. 

 

 

Furthermore, results from the ANOVA indicated that a significant difference 

existed within groups (F(1, 14) = 54.06, p < .0001), and that a significant 

group*accuracy interaction also existed  (F(1, 14) = 90.98, p < .0001) (see Figure 42). 

 94



 

Figure 42.   Estimated Marginal Means for Perceived and Actual Accuracy. 

 

 95



 96

THIS PAGE INTENTIONALLY LEFT BLANK 



V. DISCUSSION 

This chapter discusses the implications of the results presented in  

Chapter IV and discusses why such significant findings consistently emerged.  Key 

observations gathered from other researchers’ work discussed throughout Chapter II are 

included to emphasize military relevance of the findings. 

A. IMPLICATIONS OF ANALYSIS 

1. Situation Awareness (Hypothesis 1) 

 Ha1:  The RAPTOR interface leads to better levels of SA than the  

U.S. Army’s FBCB2 interface. 

The TRACE tool was developed to provide researchers with a non-obtrusive 

method for collecting participant SA data.  TRACE latency and accuracy results show 

that RAPTOR users were able to answer TRACE queries significantly faster and more 

accurately than Baseline interface users, which supports the first hypothesis (see Figure 

43). 

 

 

Figure 43.   Combined TRACE Results (Latency and Accuracy). 

Participant responses to TRACE queries were used to populate the Dynamic 

Model of Situated Cognition (DMSC) Ovals 4 to 6.  As stated in Chapter II, answers to 

TRACE Lines 1-3 provided information on Level 1 SA for populating Oval 4 
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(Perception).  Answers to Lines 4-6 provided information on Level 2 SA for populating 

Oval 5 (Comprehension), while answers to Line 7 provided information on Level 3 SA 

for populating Oval 6 (Projection).  RAPTOR enabled participants to correctly answer an 

average of 21.54 out of 22 sub-line item queries in an average of 198 seconds.  In 

contrast, Baseline interface participants correctly answered an average of only 11.87 sub-

line item queries in an average of 363 seconds (see Tables 5 and 7).  Baseline interface 

users were only able to perceive and gain limited comprehension for how deviations 

could potentially endanger current task achievement, while RAPTOR users required 

significantly less time to successfully forecast how future events would potentially 

impact objectives and end states.  These findings directly support research conducted by 

Shattuck and Miller (2006) who found that the design of an interface can affect SA by 

representing the environment more or less accurately. 

RAPTOR was designed to support direct perception by taking advantage of 

powerful human perceptual resources by presenting friendly, enemy, and environmental 

data in a meaningful, coherent, and structured manner (Rasmussen, 1992).  Conversely, 

the Baseline interface did not appear to support direct perception.  The Baseline interface 

presented complex data primarily through alphanumeric reports.  While RAPTOR’s 

design seemed to decrease the amount of cognitive resources required to acquire and 

integrate the data presented, the Baseline interface’s design forced users to apply 

extensive cognitive resources to reason about situations.  This inference is further 

supported by the ad-hoc tables and matrices created on notepaper by Baseline users 

during the experimental trials as a strategy to cope with task demands (see Appendix G).  

The successful results from this study strategy support Talcott et al.’s (2007) 

recommendation that the incorporation of an intact perception-action loop should be 

considered as a higher-order goal in interface designs. 

Enhanced levels of SA, as demonstrated by RAPTOR users, contribute to flexible 

and agile forces that are capable of acting faster than the enemy (Bushey & Forsyth, 

2006).  Improved TRACE speed and accuracy help operators close the “information gap” 

which, according Endsley and Garland (2000), is an important criterion for assessing the 

benefit of any tactical C2 system interface design. 



2. Decision Making (Hypothesis 2) 

 Ha2:  The RAPTOR interface supports better decision-making processes 
than the U.S. Army’s FBCB2 interface. 

a. Critical Information Inferences 

Commanders Critical Information Report (CCIR) latency and accuracy 

results show that RAPTOR users were able to answer critical information queries 

significantly faster and more accurately than Baseline interface users, which supports the 

second hypothesis (see Figure 44). 

 

Figure 44.   Combined CCIR Results (Latency and Accuracy). 

Participant responses to CCIR queries are represented by feedback loops 

in the DMSC (see Figure 7).  RAPTOR enabled participants to correctly answer an 

average of 3.8 out of 4 CCIR queries in an average of 38 seconds.  In contrast, Baseline 

interface participants correctly answered an average of only 2.1 sub-line item queries in 

an average of 108 seconds (see Tables 9 and 11).  The speed at which RAPTOR users 

were able to perceive and process critical information provided them with additional time 

to confirm or deny expectations.  Again, these findings directly support research 

conducted by Shattuck and Miller (2006) who found that the design of an interface can 

affect decision making by representing the environment more or less accurately. 

Reasons for these results can be attributed to the design principle of direct 

perception as previously described.  However, RAPTOR was also designed to support 

direct manipulation, thereby maintaining intact perception-action loops and allowing 

operators to act directly on objects of interest in the interface (Talcott et al., 2007; 
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Bennett et al., 2008).  In contrast, the Baseline interface design supports primarily 

indirect manipulation which results in inefficient action sequences (Talcott et al., 2007).  

This problem is especially evident when the map display is covered by the large pop-up 

windows (see Figures 23 and 24).  Consequently, the findings generated by CCIR 

measurements support Shattuck et al.’s (2000) conclusions.  That is, interfaces that make 

salient the most important data enables commanders to focus on significant portions of 

the battlefield and enables them to reason about situations in a more sophisticated 

manner. 

With respect to military relevance, the speed and accuracy with which 

RAPTOR can enable commanders to identify and comprehend critical information 

requirements facilitates timely decision-making processes that potentially affect 

successful mission accomplishment (Department of the Army, 2004).  The CCIR findings 

suggest that RAPTOR has the potential to enable commanders to operate within enemy 

decision making cycles, which will lead to agile forces capable of acting faster than the 

enemy. 

b. Critical Event Inferences 

Comparisons of critical event latency between the two interfaces were not 

significant.  To provide participants with an opportunity to make decisions during the 

experimental trials, the researchers elected to draft tactical scenarios containing three 

COAs.  One of these COAs had to be selected by the time friendly forces met all critical 

event criteria at a decision point.  Only one decision point was located within each 

scenario.  Unlike the TRACE or CCIR queries, no signals or mechanisms were 

incorporated into any of the interface displays to assist participants with making the 

decision.  COA selections were based solely on participants understanding the criteria 

listed in scenario decision support matrices and their temporal recognition of critical 

events as they transpired in the battlespace.  Consequently, no participants chose an 

incorrect COA. 

This outcome may seem odd given the significant differences found in the 

levels of SA and critical information comprehension between the two interfaces.  
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However, this result does support Adams et al.’s (1995) finding that it is possible for 

commanders with minimal SA to implement timely and accurate decisions because their 

experience and training may be sufficient to offset degraded views of the situation as long 

as they understand task demands.  All participants were very experienced C2 

practitioners, and all had been queried by researchers prior to conducting scenarios to 

ensure they fully understood the mission, commander’s intent, information requirements, 

and key tasks to be executed during the simulations.  Thus, individual participant 

experience, training, and scenario understanding, coupled with the scenarios containing 

only one decision point may have led to a ceiling effect. 

Interestingly, results indicated a significant interface*scenario interaction.  

Essentially, Baseline interface users selected COAs during the raid scenario faster than 

RAPTOR users.  On the surface, this outcome seems inconsistent with performance 

patterns demonstrated by Baseline users throughout all other tasks.  However, when 

taking into consideration that all Baseline users had combat deployments to either Iraq or 

Afghanistan (from which the raid scenario was modeled), and all had previous FBCB2 

experience, it is plausible to infer that the participants decided upon one COA prior to the 

decision point since the scenario was sufficiently representative of situations in which 

they had recent exposure and experience.  This argument has implications for Klein’s 

(1993) RPD model, which states that while under time pressure commanders rely on past 

experiences to select their COA. 

3. Workload (Hypothesis 3) 

 Ha3:  The RAPTOR interface requires less cognitive workload than the 
U.S. Army’s FBCB2 interface 

C-SWAT scores and RFI reference results show that cognitive workload was 

significantly less for RAPTOR users than Baseline interface users, which supports the 

third hypothesis (see Figure 45). 



 

Figure 45.   Combined Workload Results (C-SWAT and RFI). 

Participant C-SWAT scores were used to measure self-reported cognitive 

workload.  Participants using RAPTOR reported an average workload of 2.5 out of 7 

(i.e., 1 = very low, 7 = very high).  In contrast, Baseline interface participants reported an 

average workload of 5 (see Table 13).  Researchers also annotated the number of times 

participants referenced an OPORD during the scenarios as an additional workload 

measure.  The argument for using this measurement was that referring to external forms 

of information forced participants to divide their attention between monitoring interface 

displays and accessing additional information, which could contribute to increased 

workload.  Participants using RAPTOR sought external information an average of 0.5 

times per scenario.  Conversely, Baseline interface participants sought external 

information an average of 6.3 times per scenario (see Table 15). 

The design of RAPTOR was driven by the explicit consideration of the C2 work 

domain (Bennett, et al., 2008).  Abstraction and aggregation hierarchies and SRK 

taxonomy principles (Vincente & Rasmussen, 1992) permitted RAPTOR users to capture 

critical data pertaining to tactical scenario goals, purposes, and constraints, because 

RAPTOR represented that information in the form of higher and intermediate levels of 

visual salience directly on the display (Talcott et al., 2007).  Information presented in this 

manner enabled participants to focus on critical information (e.g., combat power, 

resources, time, task synchronization, and force ratios) without having to switch between 

multiple sets of displays.  In contrast, the Baseline interface presented data primarily via 

alphanumeric reports, which forced participants to access numerous menus, tabs, and 

individual unit reports to gather the data.  Unlike RAPTOR, whose individual displays 
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provide users with continuously updated aggregate and categorical values of key data, 

Baseline interface users had to calculate numerous parameter values (either manually or 

mentally) after the necessary data were obtained (see Appendix G for examples of the ad-

hoc tables and matrices created by Baseline users during the experimental trials).  These 

results support Talcott et al.’s (2007) research which found that displays having 

aggregation and abstraction principles incorporated into their designs support human 

perception of information in time and space, ultimately reducing operator workload. 

Researchers also found evidence of significant differences within groups for RFI 

results.  Analysis revealed that RAPTOR and Baseline participants made more references 

to external information during the raid scenario than the attack scenario.  This result is 

not surprising when considering that the goals and objectives identified for non-

conventional tactical operations are often more ambiguous and confusing than those 

identified for conventional operations. 

With respect to military relevance, reduced cognitive workload enables 

commanders to acquire and maintain higher levels of SA (Adams et al., 1995; Wickens, 

2008).  Reduced cognitive workload also frees the commander to spend his time and 

resources on higher-level cognitive processes, which may reduce uncertainty and lead to 

better decisions. 

4. Perceived vs. Actual Accuracy 

Just prior to the beginning of data collection, researchers decided to ask 

participants about their perceived accuracy (i.e., 0% = very low, 100% = very high) in 

their TRACE responses.  This decision was based on the researchers’ intuition and was 

intended to provide insights into future research in this area.  Although the researchers 

had no informed hypotheses about what the data would yield, the results proved very 

interesting. 

The results show that RAPTOR users were significantly more accurate in their 

TRACE answers than Baseline interface users.   However, an even more interesting 

discovery was the significant difference found within the Baseline group.  Essentially, 

Baseline users reported being considerably more accurate in their TRACE answers than 
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they actually were.  Perhaps most interesting was the significant group*accuracy 

interaction.  Baseline users perceived themselves to be very accurate, but actually 

achieved low accuracy.  Conversely, RAPTOR users perceived themselves to be less 

accurate, but actually achieved high accuracy. 

Because researchers decided to collect perceived accuracy data late in the study, 

no research pertaining to confidence or trust in automation was conducted prior to the 

data being collected and analyzed.  Therefore, we were unable to provide concrete 

explanations for why these results may have occurred. 
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VI. CONCLUSIONS AND RECOMMENDATIONS 

The Conclusions and Recommendations chapter addresses four key areas 

pertaining to RAPTOR.  These comments are applicable to C2 technologies in general.  

The key areas are:  (1) Study Conclusions; (2) Future Research; (3) Recommendations; 

and (4) Final Comments.  The Study Conclusions section will discuss important 

information ascertained from the study, while the Future Research section provides a 

“way-ahead” for RAPTOR’s continued development.  The Recommendations section 

focuses on modifications that should be considered for future versions of RAPTOR to 

help make the interface even more effective for warfighter use.  And, the Final 

Comments section provides the researchers’ final thoughts about this study. 

A. STUDY CONCLUSIONS 

Results from this study indicate that the RAPTOR interface was more effective 

than the Baseline interface in all areas examined.  Six out of seven statistical comparisons 

between the interfaces were significant, suggesting that performance with the RAPTOR 

interface was better than performance with the Baseline interface.  More importantly, the 

pattern of results found in this study, coupled with the results found during previous 

studies, clearly indicate that the theoretical principles used to create RAPTOR provide a 

very effective interface design strategy for assisting military practitioners in coping with 

the complexities and uncertainties inherent in C2.  Though no interface will result in 

complete understanding or perfect SA, RAPTOR has demonstrated its ability to 

effectively support warfighter cognitive processing while reducing workload, and may 

also prove to be a significant enabler in assisting the U.S. Army with maintaining a 

tactical edge over threat forces. 

B. FUTURE RESEARCH 

This study was bounded within C2 activities normally conducted during the 

execution phase of a tactical operation.  In reality, effective C2 begins during the planning 

and preparation phases, where specific goals are defined and key tasks are determined, 
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and continue through the reconsolidation phase after identified tactical goals and 

objectives have been achieved.  Accordingly, RAPTOR’s design concept encompasses a 

holistic approach toward assisting commanders with C2 throughout all phases of tactical 

operations.  Thus, the following discussion on future research will focus on three areas of 

study:  (1) additional research on operator trust and confidence when using RAPTOR to 

assist with C2; (2) RAPTOR’s application to the planning and preparation phases of 

tactical operations; and (3) RAPTOR’s application as an assessment tool. 

1. Additional Research on Trust and Confidence 

The preliminary perceived and actual accuracy results discussed in Chapters IV 

and V warrant additional research to provide plausible explanations for why RAPTOR 

users were less confident, yet more accurate in their TRACE answers, while Baseline 

users were more confident, yet considerably less accurate in their answers. 

As stated previously, prior research pertaining to user confidence and/or trust in 

automation was not conducted, thus researchers refrained from speculating about why 

these results may have occurred.  However, the results do raise several interesting 

questions.  Perhaps the Baseline users were overconfident given that they all had previous 

FBCB2 experience in tactical environments.  Perhaps RAPTOR users mistrusted the 

RAPTOR interface given the novelty of, and their inexperience with, the technology.  

Additional research in this area may provide even more conclusive evidence on 

RAPTOR’s ability to enable warfighters to cope with complex and dynamic situations. 

2. Application into Planning and Preparation Phases 

This study focused on RAPTOR’s ability to enhance warfighter performance 

during the execution phases of tactical operations.  However, the interface is designed to 

assist with all aspects of C2; additional research is needed to determine the extent to 

which RAPTOR enhances the ability of commanders and their staffs to plan and prepare 

for tactical operations. 

Planning is an arduous and time-consuming endeavor that requires activities such 

as integration, coordination, and synchronization of friendly forces and battlefield 
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operating systems.  During this phase, countless hours are dedicated to collecting and 

calculating (either manually or mentally) detailed estimates to determine the effects that 

numerous interrelated factors (e.g., friendly capabilities, enemy forces, terrain, weather, 

time, etc.) will have on tactical operations.  Accordingly, RAPTOR is designed to 

compute many of the same types of data normally calculated by battle staff personnel.  

Also, RAPTOR’s various displays (e.g., friendly combat resource display, enemy combat 

resource display, force ratio display, and temporal synchronization display) represent data 

in tables, charts, and graphs that are similar to products typically generated during 

mission analysis and COA development processes. 

Battlefield preparation also requires continuous estimate refinement, COA 

analysis and comparison, and approval processes.  Similar to the planning phase, many of 

RAPTOR’s displays and manipulable tools can assist battle staffs with specific 

preparation processes.  For example, RAPTOR’s COA buttons enable the commander 

and his staff to preview and compare differences between alternative COAs in the spatial 

synchronization and temporal synchronization modes.  The graphical replay slider 

enables the commander and his staff to preview and analyze pre-planned activities in 

time and space.  RAPTOR can also assist with refining estimates by computing fresh data 

as updates are received. 

Presumably, the speed and efficiency afforded by RAPTOR will enable 

commanders and staff personnel to spend their time and energy on higher-level processes 

such as decision making.  Thus, studies that examine RAPTOR-aided planning and 

preparation processes may produce conclusive evidence on the interface’s ability to 

enable battle staffs to receive, process, share, disseminate, and display reliable 

information faster and more effectively than current C2 technologies. 

3. Application as an Assessment Tool 

Commanders must assess actions taken (or not taken) during every phase of a 

tactical operation to avoid committing similar mistakes during future operations, and to 

continuously improve overall unit performance.  The after-action review (AAR) is a type 

of assessment routinely conducted during training and in combat.  AARs enable 
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commanders to identify deficiencies, sustain proficiency, and focus on strengthening 

specific task performance.  Effective AARs (i.e., those that uncover and capture key 

lessons learned) explore critical events, actions, and observations by time sequence to 

prevent the loss of valuable information and to promote constructive feedback 

(Department of the Army, 1993). 

Consequently, assessments such as AARs are another arena in which RAPTOR 

may be suited to assist commanders.  In essence, RAPTOR records graphical 

representations of events as they transpire in time and space.  The plan review mode and 

graphical replay slider provide commanders with the ability to “rewind” through 

historical events and locate discrete activities of interest to determine exactly which 

deviations occurred during precise points in time.  In reality, commanders have very 

limited capabilities to capture activities during combat operations in Afghanistan and Iraq 

for AAR purposes.  Thus, studies that examine RAPTOR-aided AAR processes may 

illustrate the interface’s potential to enable warfighters to ascertain fine details of crucial 

lessons that may often remain unnoticed during current battlefield operations. 

C. RECOMMENDATIONS 

The following sections are focused on researchers’ observations and participant-

elicited feedback that should be considered for future versions of RAPTOR to help make 

the interface more intuitive and beneficial for warfighter use.  Strategies are also 

described for generalizing RAPTOR’s capabilities to other military operations beyond the 

context of battalion-level command and control. 

1. Researcher Observations 

a. Display Modifications 

Portions of RAPTOR’s displays must become more robust in order to 

represent different structures and capabilities for both friendly and threat forces.  The 

current unit control tree design represents friendly units as an armored task force 

configuration typically employed by Heavy Brigade Combat Teams (HBCT) before the 

Army’s transformation process began in earnest in 1999.  Since then, the Army has 
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fielded Stryker Brigade Combat Teams (SBCT) and reconfigured many HBCTs into 

Units of Action (UA).  The Army also currently fields Infantry Brigade Combat Teams 

(IBCT), Airborne Brigade Combat Teams (ABCT), and Armored Cavalry Regiments 

(ACR).  Each are uniquely structured and equipped with considerably different 

capabilities.  Furthermore, combat brigades will often receive additional combat 

multipliers such as attack aviation, field artillery, and military police to enable mission 

accomplishment.  The unit control tree must be sufficiently tailor-able to represent the 

various force structures and combat multipliers employed by current combat  

brigade teams. 

Similarly, the current enemy combat resource display represents equipment 

primarily associated with conventional enemy force structures.  However, rocket-

propelled grenades and improvised explosive devices are the major weapon systems 

currently used by insurgent forces in Iraq and Afghanistan.  Thus, future RAPTOR 

versions should be sufficiently tailor-able to represent a wide array of capabilities that 

can be employed by conventional and non-conventional threat forces.  Also, force 

equivalence algorithms must be accurately reflect friendly and enemy force structures to 

ensure force ratio values are properly computed and presented in the force ratio display. 

b. Usability 

Currently, information represented by RAPTOR’s displays cannot be 

altered by users.  Future versions must include intuitive options and tools that enable 

users to quickly and efficiently alter, update and refine information represented in the 

various displays as situations, conditions, and missions change.  For example, specific 

tasks and timing considerations are determined during the mission planning and 

preparation phases.  Staff personnel must be able to populate and refine synchronization 

points and activities in the spatial and temporal synchronization displays as the plan 

matures.  Staff personnel must also be able to build alternate courses of action, branches, 

and sequels into the same displays during COA development, comparison, and analysis 

processes.  Furthermore, the unit control tree and enemy resource display must permit 
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staffs to accurately represent force structures as friendly combat elements and multipliers 

are attached and/or detached, and as threat capabilities change. 

An additional capability that should be considered for incorporation into 

future versions of RAPTOR is a tool that enables staff personnel to build and refine 

overlays that can be “laid” on top of maps presented in the spatial synchronization 

display.  The Army routinely uses numerous overlays such as graphic control measures, 

tactical mission graphics, and modified combined obstacle overlays to highlight mission 

details and directives that require special emphasis (Department of the Army, 2004).  

RAPTOR should permit users to build, save, access, disseminate, share, and display 

overlays when required.  Users should also have the ability to layer multiple overlays on 

top of the map, and be able to turn specific overlays “on or off” when needed.  FBCB2 

enables users to build graphic control measures, but its functionality is very limited in 

scope.  In contrast to FBCB2, the robust overlay capability described is currently 

supported by FalconView, which is a Windows-based mapping system originally 

designed for U.S. Air Force aviation mission planning.  However, unlike FalconView, 

RAPTOR should support overlay options representative of symbols and colors that are in 

accordance with U.S. Army conventions. 

2. Participant Feedback 

Participants who used the RAPTOR interface during experimental events were 

asked to complete a brief feedback survey at the conclusion of their final trial.  The 

survey (see Appendix F) consisted of six statements about the different displays, options, 

and tools presented by the RAPTOR interface.  Participants were asked to score how 

strongly they either agreed or disagreed with each statement by selecting an applicable 

number on a 5-point Likert scale (1 = strongly disagree and 5 = strongly agree).  

Participants were also encouraged to provide comments about the specific displays, 

options, and tools referenced in each statement.  The following summarizes participant 

comments and average scores provided for each statement: 

 The individual resource bar chart color codes used in the Friendly Combat 

Resource Display enables rapid comprehension of unit combat 
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effectiveness (Average Score = 4.5).  Three (out of 16) participants stated 

that certain bar colors were difficult to determine when the chart 

background color was the same as the bar color.  In particular, amber bars 

tend to appear gray when presented on a chart with an amber background.  

Additionally, one participant commented that the resource charts would be 

more effective if all pacing items (e.g., mortar carriers, self-propelled 

howitzers, etc.) in a unit task organization were added as additional 

combat parameters. 

 The Force Ratio Display facilitates decision making by enabling users to 

quickly determine which force (friendly or enemy) has a superior 

advantage (Average score = 4).  Five participants stated that the force ratio 

display is too large, and the value of the data represented does not justify 

the amount of space dedicated to the display.  Two participants 

commented that the force ratio is great for planning purposes, but during 

execution, knowing available friendly combat power is more important 

than knowing force ratio values. 

 The Unit Control Tree enables users to quickly determine friendly 

resource statuses at finer or courser levels of detail (Average score = 4.5).  

Two participants stated that the unit control tree is a very useful and 

intuitive tool. 

 The COA button assists with decision making by enabling users to rapidly 

access and view alternative actions friendly forces can execute if required 

(Average score = 4.375).  Three participants stated that the COA review 

buttons is a great operational tool, but that changes in unit activities 

between each COA should be highlighted in the temporal synchronization 

display to better enable users to quickly determine major differences.  It is 

important to note that changes between COAs are highlighted by different 

color synchronization points and activity lines in the spatial 

synchronization display.  One participant stated that additional buttons 
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should be added so that branch plans and sequels could also be viewed in 

the spatial and temporal synchronization displays. 

 Information provided in the Temporal Synchronization Display enables 

users to anticipate future friendly force activities by time, phase, and event 

(Average score = 4.5).  The three participants made the same statements as 

above about changes in unit activities between each COA should be 

highlighted for easier recognition. 

 The Enemy Combat Resource Chart reduces uncertainty by enabling users 

to quickly determine enemy strength and combat effectiveness (Average 

score = 4.25).  Three participants stated that the enemy resource display is 

a very intuitive tool that greatly assists users in determining enemy battle 

damage assessments and to build an overall mental model of the threat 

environment. 

The below statements stem from the final part of the survey that asked 

participants to provide general comments about RAPTOR’s overall usefulness: 

RAPTOR is much easier to use than FBCB2.  The displays provide 
comprehensive and visual data representations that facilitate quick and 
accurate decision making processes. 

RAPTOR is a great tool that has the potential to streamline many C2 
processes.  Data represented by the different displays makes decision 
making much easier, and the color codes are excellent at enabling rapid 
battlefield assessments. 

The only flaw I see with RAPTOR’s design is the inability to communicate 
with people out in the battlespace. 

The statement concerning the force ratio display received the lowest average 

score and also generated the most comments.  The central issues were (1) force ratios are 

more valuable for decision making during the planning phase and less valuable for 

decision making during execution phase, and (2) the current display design occupies too 

much space that could be used to display other types of information.  Perhaps future 

versions of RAPTOR should incorporate a smaller force ratio display.  The additional 

space could be used for branch plan and sequel review buttons as suggested.  Human 
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interaction concerns could also be addressed by adding a free text window to enable 

commanders to “chat” with subordinate commanders.  If a smaller force ratio display 

cannot be designed, perhaps users could be provided with an option to turn the display 

“on or off” as desired.  When turned off, users can access other information 

recommended by participants.  When turned on, the force ratio display would temporarily 

“mask” the additional information until the force ratio data is no  

longer required. 

3. Progression Strategies 

The theoretical constructs used to design RAPTOR may enable the interface to be 

applied to other military operations beyond the context of battalion level command and 

control. 

a. Application to Higher Level Commands 

This study was bounded within C2 activities occurring at the battalion 

level.  However, battalions normally deploy and conduct tactical operations as a part of 

larger brigade-size organizations.  As stated earlier, many “legacy” brigade combat teams 

have been restructured into UAs to better fulfill the Army’s expeditionary needs.  As a 

result, UA commanders control 3 to 4 maneuver battalions, indirect fire units, engineer 

assets, and a wide range of intelligence, surveillance, and reconnaissance capabilities 

(e.g., UAV UGVs, electronic sensor suites, etc.) in order to orchestrate multiple 

engagements simultaneously.  Coordinating and synchronizing various formations and 

platforms designed to perform distinctive, yet interdependent roles makes C2 at brigade 

and higher levels much more complex and dynamic than C2 activities conducted at 

battalion levels. 

Consequently, the Army is pursuing a Command Post of the Future 

(CPOF) that enables commanders and staffs to bridge, analyze, and correlate disparate 

sources of data originating from nodes distributed throughout the battlefield.  The goal of 

CPOF technologies is to aide problem solving and decision making by packaging and 

presenting data in formats that support human thought processes (DARPA, 2009).  Goals 
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established for CPOF could potentially be achieved by implementing RAPTOR’s 

theoretical concepts into the program.  RAPTOR’s direct perception, manipulation, 

aggregation, and abstraction hierarchy design principles may prove invaluable at enabling 

decision-makers to achieve desired levels of information processing, integration, and 

collaboration throughout all echelons of command. 

b. Expansion to Other Military Services 

Scenarios used for this study were developed specifically for U.S. Army 

personnel.  However, all military services must cope with the complexities of C2 during 

combat operations.  Since each service strives to achieve better levels of SA and 

enhanced decision making, RAPTOR’s design principles may also prove useful in 

assisting U.S Navy carrier group commanders during continuous operations at sea or  

U.S. Air Force commanders during extended air campaigns.  Combat operations executed 

by the U.S. Marine Corps closely parallel those executed by the U.S. Army.  Presumably, 

RAPTOR’s effectiveness at facilitating C2 activities conducted by U.S. Army personnel 

may also prove successful for U.S. Marine Corps personnel.  Scenarios representative of 

distinct U.S. Marine Corps tactical problems (e.g., amphibious assault operations) should 

be developed to explore RAPTOR’s applicability into other tactical environments.  

Future research efforts should consider RAPTOR’s impact on the planning and execution 

of joint military operations. 

c. Migration to Civilian Occupations 

Effective command and control is not just a military problem.  Many 

civilian businesses routinely plan, synchronize, and coordinate complex activities to 

reduce risks and ensure best business practices.  In particular, the transportation industry 

(e.g., airlines, railways, trucking companies, etc.) uses sophisticated technologies to plan 

efficient operator schedules, movement tables, and travel routes to achieve profitable 

transit goals.  Furthermore, finite resource expenditures are a major constraint for 

transportation planners and operators considering the rising price of gasoline in the 

current economy.  Consequently, transport controllers and asset operators are also 
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becoming more reliant on global positioning systems to track delivery progress and to 

avoid potential delays caused by weather, traffic, and other types of unforeseen events.  

However, these technologies are not always capable of producing acceptable solutions 

given the complex and dynamic environments in which transportation occurs.  Operator 

intervention is often required to solve problems.  Although the operating environments 

are different, the defining characteristics of the objects of interest are similar to those in 

military C2.  Therefore, it is reasonable to speculate that an interface founded on 

ecological and CSE design principles would provide a very effective strategy for enabling 

the transportation industry to achieve desired goals and end states. 

D. FINAL COMMENTS 

Information is vital for success during war.  Those who are faster at collecting, 

analyzing, integrating, and understanding relevant information will gain a superior 

advantage over any adversary.  However, the quest for more information can also 

degrade operational effectiveness.  Research into technologies designed to correctly 

support human cognition has great potential for enhancing warfighter reasoning and 

thought processes, while at the same time reducing operator workload.  The researchers 

are confident that the findings in this study will lead to interface designs capable of 

enhancing military practitioner by improving SA, resulting in better decisions during 

complex, fluid, and dynamic situations.  Additionally, the proposed research areas may 

also provide conclusive evidence of RAPTOR’s potential to facilitate every aspect of C2 

throughout all levels of command and in a wide range of operational environments.  

Finally, researchers believe results of this study will assist the U.S. Army in its efforts to 

develop advanced C2 interfaces that account for human capabilities and limitations. 
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APPENDIX A. ATTACK SCENARIO OPERATIONS ORDER  

OPERATION ORDER 08-43 (OPERATION TYPHOON)  
 
References: Map, DMA, 1983, Scale 1:50,000, Series V795, Sheet I 
 
Time Zone Used Throughout Order: Local 
 
Task Organization: 
 

  

  

1. SITUATION. 
 
 a. Battlefield conditions. 
 
                (1)  Weather.  No Change. 
 
                (2)  Light Data. No Change 
 
(3)  Terrain.  Elevation gradually increases to the west.  The primarily open desert 

terrain located east of the 47 Easting supports large formations of armored vehicles 

traveling at high rates of speed. 

 
(4)  Obstacles.  A large blocking obstacle consisting of anti-tank mines and wire 

is located to the East of the enemy defensive positions, and runs from North to South 

across the width of the TF zone.  Obstacle belts are tied into the ridges located in the 

northern and southern portions of the TF zone.   The entire length of the blocking 

obstacle is covered by overlapping direct fires from enemy forces located within OBJ 

KILLER. 

 

b.  Enemy Forces.  Immediately opposing our TF are elements of the 269th 

Motorized Rifle Battalion (MRBN) estimated at 100% strength.  The 269th is 
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defending with three Motorized Rifle Companies (MRC) consisting primarily of 

BMP-2s, and is also believed to be reinforced by one CO of T-72 tanks.  Enemy 

defensive positions have been confirmed at OBJ KILLER.  Though no specific 

combat platforms have been identified, enemy forces projected up to company 

strength (10-13 vehicles) have been templated on OBJ KILLER. 

 
               (1). MLCOA in TF OUTLAW Zone [See Appendix 1 (SITEMP) to 

Annex B (Intelligence)].  Enemy defends in depth within OBJ KILLER with three BMP 

PLTs in prepared fighting positions. 

 
               (2). MDCOA in TF OUTLAW Zone.  Enemy defends in depth vic OBJ 

KILLER with three BMP PLTs and one T-72 Tank PLT in prepared defenses.  Enemy 

will attempt to flank the TF by conducting a counter-attack into either the southern or 

northern flanks. 

 
               (3).  Enemy Composition (Templated). 
 
     c.  Friendly Situation.  The current mission is part of ongoing offensive 

operations.  Due to the OPTEMPO, logistical are experiencing difficulties with 

resupplying forward units.  Thus, TF OUTLAW will execute this mission with severely 

reduced resources. 

 
2.   MISSION.  NLT xxxxJUNxx, TF OUTLAW attacks west toward PL 

JEFFERSON and destroys enemy forces located vic OBJ KILLER IOT facilitate 

continued offensive operations by follow-on forces. 

3. EXECUTION. 
 
 a.  OUTLAW 6 Intent: 
 
      Purpose:  Complete the destruction of enemy forces in TF LUCKY 

zone. 
 
      Key Tasks: 
 Establish multiple breach lanes through enemy obstacle belt. 
 Rapid FPOL of TM D to OBJ DALLAS [Decision Point 1 (DP 1)].   
 Complete the destruction of enemy forces on OBJ KILLER (TM D). 
 Establish screen along PL JEFFERSON. 
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      Endstate: 
 Friendly:  TF OUTLAW preparing for future combat operations along PL 

JEFFERSON. 
 Enemy:  All enemy forces destroyed on OBJ KILLER. 
 
 b.  Concept of Operations [See Appendix 1 (Concept Sketch) to Annex C 

(Operations)].  The decisive point of this operation is the rapid FPOL of TM D toward 

OBJ DALLAS (DP 1) IOT complete the destruction of enemy forces located within OBJ 

KILLER.  This is a 5 phase operation:  (1) PL PHOENIX to PL DAMAGE; (2) Breach; 

(3) Assault OBJ KILLER; (4) FPOL to OBJ DALLAS; (5) Screen.  Three courses of 

action (COA) have been planned based on the first CO/TM to establish a breach lane and 

maneuver west of PL RAMPAGE.  The following conditions drive which COA will be 

implemented at DP 1 [See Appendix 3 (Decision Support Matrix) to Annex C 

(Operations)]: 

 

 COA A (initial COA to be executed) - TM D follows TM B (center zone in AXIS 
B)toward OBJ KILLER. 

 COA B - TM D follows TM C (south zone in AXIS C) toward OBJ KILLER. 
 COA C - TM D follows TM A (north zone in AXIS A) toward OBJ KILLER. 

 

      c.  Scheme of Maneuver [See Appendix 2 (Execution Matrix) to Annex C 

(Operations)]. 

 

 (1)  PHASE I (PL PHOENIX to PL DAMAGE) – TF Scouts RP PL 

PHOENIX first, and conduct moving screen along the northern portion of the TF zone 

IOT protect the TF north flank.  Sequentially, once TF Scouts reach PL DAMAGE, TMs 

A, B, & C RP PL PHOENIX and attack west toward PL DAMAGE.  TM A attacks along 

AXIS A in the north, TM B attacks along AXIS B in the center, and TM C attacks along 

AXIS C in the south.  Once TMs A, B, and C reach PL DAMAGE, TM D departs ATK 

POS D and TF Mortars depart CP 1 west toward PL PHOENIX.  Phase I ends once TF 

Scouts reach PL RAMPAGE, TMs A, B, and C are arrayed along PL DAMAGE, and TM 

D with TF Mortars executing PL PHOENIX west toward PL DAMAGE. 
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 (2)  PHASE II (BREACH) – (DP 1 located in this phase) This phase 

begins once TMs A, B, and C execute PL DAMAGE west to PL RAMPAGE.  TF Scouts 

establish OP 1 on the key terrain located vic 14RPV 462163 to identify forward edge of 

enemy obstacles and enemy defensive positions within OBJ KILLER.  TF Mortars 

establish a mortar firing point (MFP) vic CP 2 and prepare to support TF breaching 

operations with indirect fires.  TMs A, B, and C locate enemy obstacles vic PL 

RAMPAGE and prepare to breach.  TF Mortars fire TGT GRP CJ7 to suppress enemy 

forces on OBJ KILLER.  Sequentially, TM D establishes ABF D and destroys enemy 

forces located vic OBJ KILLER ISO TF breaching operations.  TM A breaches in AXIS 

A, TM B breaches in AXIS B, and TM C breaches in AXIS C.  TM D immediately 

collapses ABF D once the first CO/TM establishes a breach lane and maneuvers west of 

PL RAMPAGE (DP 1).  TM D follows the CO/TM toward OBJ KILLER (currently 

planned as COA A behind TM B).  TF Scouts remain at OP 1 to observe mortar fires ISO 

TF breaching operations.  Phase II ends with TM D assaulting west through the breach 

toward OBJ KILLER. 

 

 Alternate COAs at DP 1 – In the event TM B does not establish the first breach 
lane, TF OUTLAW prepares to execute alternate COAs IAW DP 1 criteria.   
 

o COA B is the event TM C establishes the initial breach lane and 
maneuvers west of PL RAMPAGE.  During COA B, TM D follows TM 
C south toward OBJ KILLER. 

 

o COA C is the event TM A establishes the initial breach lane and 
maneuvers west of PL RAMPAGE.  During COA C, TM D follows TM 
A north toward OBJ KILLER. 

 

 (3)  PHASE III (ASSAULT OBJ KILLER) – This phase begins once all 

TMs have maneuvered west of PL RAMPAGE toward OBJ KILLER.  TF Mortars fire 

TGT DF0104 to suppress enemy forces located vic OBJ DALLAS.  Simultaneously, TM 

A assaults OBJ ATLANTA and destroys enemy forces located in the northern portion of 

OBJ KILLER. TM B assaults OBJ BOSTON and destroys enemy forces located in the 

forward center portion of OBJ KILLER.  TM C assaults OBJ CHICAGO and destroys 
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enemy forces located in the southern portion of OBJ KILLER.  TM D follows and 

supports TM B on OBJ BOSTON (COA A).  TF Scouts remain at OP 1 to observe 

mortar fires ISO TF assault.  Phase III ends with enemy forces destroyed in OBJ 

BOSTON and TM D prepared to conduct FPOL through TM B toward OBJ DALLAS 

(COA A). 

 

 COA B – TM D follows and supports TM C on OBJ CHICAGO, and prepares to 
conduct FPOL through TM C toward OBJ DALLAS. 
 

 COA C – TM D follows and supports TM A on OBJ ATLANTA, and prepares to 
conduct FPOL through TM A toward OBJ DALLAS. 
 

  (4)  PHASE IV (FPOL to OBJ DALLAS) – This phase begins once 

conditions have been set to enable TM D to assault remaining enemy forces vic OBJ 

DALLAS.  TM D FPOLs TM B and assaults OBJ DALLAS to complete the destruction 

of enemy forces within OBJ KILLER (COA A).  Simultaneously, TF Mortars cease fire 

on TGT DF0104 once TM D FPOLs TM B.  Sequentially, TF Mortars cross the enemy 

obstacle belt through the lane located in AXIS C and establishes an MFP vic CP 3.  TF 

Scouts remain at OP 1 and provide early warning IOT protect TF north flank.  This phase 

ends once all enemy elements are destroyed vic OBJ KILLER. 

 

 COA B –TM D FPOLs TM C and assaults OBJ DALLAS to complete the 
destruction of enemy forces on OBJ KILLER. 
 

 COA C –TM D FPOLs TM A and assaults OBJ DALLAS to complete the 
destruction of enemy forces on OBJ KILLER. 
 

         (5)  PHASE V (SCREEN) – This phase begins once all enemy forces are 

destroyed within OBJ KILLER.  TF OUTLAW establishes a screen arrayed along PL 

JEFFERSON.  TM A will establish the screen to the north, TM B establishes the screen 

in the center, and TM C establishes the screen in the south.  TM D consolidates on OBJ 

DALLAS as the TF reserve.  TF Scouts remain at OP 1 and provide early warning IOT 
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protect TF north flank.  TF Mortars remain at CP 3 and prepare to provide indirect fires 

ISO TF screening operations.   

 

      d.  Concept of Fires:  TF Mortars will remain under TF control for the 

duration of the operation.  The purpose of fires for this operation is to provide 

suppressive fires on OBJ KILLER.  Mortar fires initially support TF breaching 

operations, then support TM D’s assault on OBJ DALLAS. 

 

       e.  Coordinating Instructions. 
 

 Information Requirements [See Appendix 2 (Commander’s Critical Information 
Requirements) to Annex B (Intelligence)]. 
 

 DP Criteria [See Appendix 3 (Decision Support Matrix) to Annex C 
(Operations)]: 

o First TM to establish breach determines DP 1 criteria.  DP 1 is located in 
Phase II of the operation.  DP 1 drives the COA to be executed at the end 
of Phase II. 

 
4. SERVICE SUPPORT.  Current / Projected CO/TM & Specialty PLT level 

combat resource status [See Appendix 1 (Resource Status Matrix) to Annex I (Logistics). 
 
5. COMMAND and SIGNAL. (No Change) 
 
 
 
                                                                                      SHATTUCK 
                               LTC 
 
OFFICIAL: 
HALL 
S3 
 
ANNEXES: 
ANNEX B (Intelligence) 
        APPENDIX 1 (Enemy SITEMP) 
        APPENDIX 2 (Information Requirements) 
ANNEX C (Operations) 

            APPENDIX 1 (COA Concept Sketches) 
            APPENDIX 2 (Execution Matrix) 
            APPENDIX 3 (Decision Support Matrix) 

ANNEX I (Logistics) 
       APPENDIX 1 (Resource Status Matrix)  
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Appendix 2 (CCIR) to Annex B (Intelligence) to OPORD 08-43 (Operation Typhoon) 

Commander’s Critical Information Requirements (CCIR)  

 

Priority Intelligence Requirements (PIR): 

 

1. Are T-72 tanks present vic OBJ KILLER?  
2. What is the enemy’s remaining combat power for both T-72s & BMPs (alive + 

templated) once TM D reaches ABF D? 
 

Friendly Force Information Requirements (FFIR): 

 

1. What is the friendly to enemy force ratio (ex. 3:1) once TM D reaches PL 
DAMAGE? 

2. What are the Mortar platoon’s resource statuses once they reach PL DAMAGE? 
(Report color status for ammo, fuel, and vehicles)   
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APPENDIX B. RAID SCENARIO OPERATIONS ORDER  

OPERATION ORDER 08-44 (OPERATION WHIPLASH)  
 
References: Map, Falcon View version 6, 1998, Al Icia Maria, Isconderia, Special 
 
Time Zone Used Throughout Order: Local 
 
Task Organization: 
 

  

 
1. SITUATION. 
 
 a. Battlefield conditions. 
 
                (1)  Weather.  No Change. 
 

(2) Light Data.  No Change. 
 
                (3) Terrain. AL ICIA MARIA is complex urban terrain severely 

restricts friendly vehicular movement.  Most roads facilitating armor vehicles only enable 

west-east travel in column formations.  Narrow roads surrounded by structures create 

numerous choke points and kill zones. 

 

               (4) Obstacles.  Enemy is anticipated to employ IEDs within choke points 

and street intersections. 

 

b.  Enemy Forces.  AL ICIA MARIA is located three kilometers west of the 

SCIRIAN border, and has become a major point of infiltration for foreign supplied 

weapons, fighters, and money being funneled to the Anti-Isconderian Forces (AIF).  

HUMINT sources suggest that ABU X is directly overseeing all AIF activities in and 

around AL ICIA MARIA.  ABU X is currently listed as Number 4 on the Coalition Force 
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(CF) High Value Individual (HVI) target list.  HUMINT sources revealed that ABU X 

has been routinely traveling from SCIRIA to AL ICIA MARIA in a black two door Opal 

for the past couple of months.  HUMINT sources also revealed that ABU X often 

conducts meetings from safe houses located vic OBJs DYLAN and BRUCE.  Recent 

SIGINT indicates that ABU X is currently located within AL ICIA MARIA and plans to 

meet with other insurgent leaders.  Additionally, Isconderian Security Forces (ISF) report 

that the AIF is using a school located vic OBJ CRAZY as an insurgent recruiting station.  

The AIF is also believed to have established an improvised explosive device (IED) and 

vehicle-borne improvised explosive device (VBIED) factory vic OBJ ADAM.  

Intelligence sources currently estimate 20-30 AIF personnel operating within AL ICIA 

MARIA. 

 
    (1). MLCOA in TF OUTLAW AOR [See Appendix 1 (SITEMP) to Annex B 

(Intelligence)].  ABU X will depart AL ICIA MARIA in anticipation of CF operations.  

Hard core fighters will conduct attacks consisting of IEDs, anti-armor ambush teams with 

multiple RPGs, and limited mortar fires to discourage CF from entering into key AIF 

areas of operation. 

 
            (2). MDCOA in TF OUTLAW AOR.  AIF employs VBIEDs to enable 

ABU X to exfiltrate east toward SCIRIA. 

 
            (3).  Enemy Composition (Templated). 
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c.  Friendly Situation.  The current mission is part of ongoing offensive 

operations.  Due to the OPTEMPO, logistical are experiencing difficulties with 

resupplying forward units.  Thus, TF OUTLAW will execute this mission with severely 

reduced resources. 

 

2. MISSION.  NLT xxxxJUNxx, TF OUTLAW raids insurgent support 

zones in AL ICIA MARIA IOT disrupt AIF operations within AO OUTLAW. 

3. EXECUTION. 
 
 a.  OUTLAW 6 Intent: 
 
 Purpose: Disrupt AIF activities within AL ICIA MARIA. 
 Key Tasks: 

 Conduct precision raids against specified objectives within AL ICIA MARIA.  
 Capture/Kill HVI # 4. 
 Destroy insurgent safe havens, training facilities, and munitions factory. 

Endstate: 
 Friendly:  TF OUTLAW preparing for future COIN operations in AOR 

OUTLAW. 
 Enemy:  Insurgent Groups neutralized and unable to support ongoing AIF 

activities. 
 
 b.  Concept of operations [See Appendix 1 (Concept Sketch) to Annex C 

(Operations)].   The decisive point of this operation is the capturing/killing of HVI # 4 

through rapid and violent execution.  This is a 4 phase operation:  (1) Initial assault; (2), 

raids; (3) complete AIF destruction; (4) exfiltration.  Three courses of action (COA) have 

been planned based on HVI # 4’s location.  These conditions will drive which COA is 

implemented at DP 1 [See Appendix 3 (Decision Support Matrix) to Annex C 

(Operations)]: 

 

 COA A (initial COA to be executed) - HVI # 4 located vic OBJ DYLAN.  TM D 
executes raid on OBJ DYLAN and captures/kills HVI # 4.    

 COA B - HVI # 4 not identified within AL ICIA MARIA.  TM C executes raid 
on OBJ BRUCE.   

 COA C - HVI # 4 located vic OBJ BRUCE. TM A executes raid on OBJ 
BRUCE. 
 



 132

c.  Scheme of Maneuver [See Appendix 2 (Execution Matrix) to Annex C 

(Operations)]. 

 

      (1)  PHASE I (INITIAL ASSAULT) – This phase begins with TF 

Scouts at OP 1 to gain observation on OBJs DYLAN and BRUCE.  Simultaneously, TM 

C establishes SBF C1, and TF Mortars establish MFP vic CP 1 to enable TF freedom of 

maneuver during the initial assault into the town.  Sequentially, TMs A & D attack 

toward PL TIGRIS along RTEs AGGIES and DYNAMITE respectively.  TM B 

establishes ATK POS B and prepares to attack along RTE BONFIRE.  TF Mortars fire 

TGT GRP CJ7 once TM D executes PL RHINE to suppress possible anti-armor ambush 

teams operating in the northern forest.  TM C departs SBF C1 and attacks along RTE 

CROW to PL AMAZON once TM A executes PL AMAZON.  Simultaneously, TM B 

departs ATK POS B and clears RTE BONFIRE east from PL RHINE to PL AMAZON 

once TMs A & D execute PL AMAZON.  This phase ends with TF OUTLAW 

maneuvering toward specified OBJs. 

 

      (2)  PHASE II (RAIDS) – This phase begins with TM A executing a 

raid on OBJ ADAM to destroy enemy IED/VBIED factory, while TM B clears RTE 

BONFIRE from PL AMAZON to PL TIGRIS.  Sequentially, TF Mortars fire TGT 

DF0104 once TM D executes PL TIGRIS to deny enemy exfiltration east from OBJ 

DYLAN.  Once TM A seizes OBJ ADAM, TM C raids OBJ CRAZY to destroy AIF 

recruiting center, while TM D raids OBJ DYLAN to capture/kill HVI # 4 (COA A).  TF 

Scouts remain at OP 1 and continue to observe assigned areas of observation.  This phase 

ends with TMs A, C, & D completing raids on their assigned OBJs, and with TM B 

clearing RTE BONFIRE east to PL TIGRIS. 

 

      (3)  PHASE III (COMPLETE AIF DESTRUCTION) – (DP 1 located 

in this phase) This phase begins with TM A establishing SBF A1 to suppress enemy 

elements located vic OBJ BRUCE.  Sequentially, once TM A establishes SBF A1, TMs 

C & D complete actions on their OBJs and establish SBFs C2 & D1 respectively to 
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suppress enemy elements vic OBJ BRUCE.  TF Mortars fire TGT DF0105 once TM D 

establishes SBF D1 to suppress enemy elements on OBJ BRUCE.  Once all SBFs are 

established, TM B executes PL TIGRIS and attacks toward OBJ BRUCE.  TF Mortars 

cease fires on TGT DF0105 once TM B executes PL NILE.  Sequentially, TM B raids 

OBJ BRUCE and completes the disruption of AIF activities within AL ICIA MARIA 

(COA A).  TF Scouts remain at OP 1 and continue to observe assigned areas of 

observation.  This phase ends with all raids complete and HVI # 4 captured, killed, or 

confirmed not present within AL ICIA MARIA. 

 

 Alternate COAs at DP 1 - In the event HVI # 4 is not located vic OBJ DYLAN, 
TF OUTLAW prepares to execute alternate COAs IAW DP 1 criteria.   

 

o COA B is in the event HVI #4’s location cannot be identified within AL 
ICIA MARIA.  During COA B, TM C bypasses SBF C2 and raids OBJ 
BRUCE to complete the disruption of AIF activities within AL ICIA 
MARIA.  TM B executes PL TIGRIS and establishes SBF C2.  TMs A & 
D remain at SBFs A1 & D1 respectively, and continue to suppress OBJ 
BRUCE ISO TM C.  TF Mortars cease TGT DF0105 once TM C reaches 
SBF C2.  

 

o COA C is executed if HVI # 4 is located in the vicinity of OBJ BRUCE.  
During COA C, TM A immediately departs/bypasses SBF A1 and attacks 
toward OBJ BRUCE to capture/kill HVI # 4 IOT deny his escape from the 
battlespace.  TMs C & D remain at SBFs C2 & D1 respectively, and 
continue to suppress OBJ BRUCE ISO TM A.  TM B holds at PL TIGRIS 
along RTE BONFIRE.  TF Mortars cease fire on TGT DF0105 once TM 
A departs SBF A1. 

 

      (4)  PHASE IV (EXFILTRATION) – This phase begins on order (O/O) 

once all OBJs have been thoroughly searched and all detainees have been secured. 

 

       d.  Concept of Fires:  TF Mortars will remain under TF control for the 

duration of the operation.  The purpose of fires for this operation is to enable the TF to 

maintain freedom of maneuver during the duration of the operation by providing 

suppressive fires on pre-designated targets.  Mortar fires initially support TM D as they 



 134

maneuver along RTE DYNAMITE, then during TM D’s raid on OBJ DYLAN.  Mortar 

fires sequentially support the raid on OBJ BRUCE. 

       e.  Coordinating Instructions. 
 

 Information Requirements [See Appendix 2 (Commander’s Critical 
Information Requirements) to Annex B (Intelligence)]. 

 
 DP Criteria [See Appendix 3 (Decision Support Matrix) to Annex 

C (Operations)]: 
o HVI # 4’s location determines DP 1 criteria.  DP 1 is 

located in the beginning of Phase III of the operation.  DP 1 drives the 
COA to be executed during Phase III. 

 
4. SERVICE SUPPORT.  Current / Projected CO/TM & Specialty PLT level 

combat resource status [See Appendix 1 (Resource Status Matrix) to Annex I (Logistics). 
 
5. COMMAND and SIGNAL. (No Change) 
 
 
         SHATTUCK 
      LTC 
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Appendix 2 (CCIR) to Annex B (Intelligence) to OPORD 08-44 (Operation Whiplash) 

 

Commander’s Critical Information Requirements (CCIR)  

 

Priority Intelligence Requirements (PIR): 

 

3. Is the enemy employing VBIEDs within AL ICIA MARIA?  
4. What is the enemy’s remaining combat power for both RPG Teams and VBIEDs 

(alive + templated) once TM C reaches PL TIGRIS?  
 

Friendly Force Information Requirements (FFIR): 

 

3. What are TM A’s resource statuses once they reach PL AMAZON? (Report color 
status for ammo, fuel, and vehicles)   

4. What is the friendly to enemy force ratio (ex. 3:1) once TM B reaches PL 
AMAZON?  
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APPENDIX C. PARTICIPANT DEMOGRAPHIC SURVEY 
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APPENDIX D. RAPTOR POST-TRAINING TEST 

Directions:  The following questions pertain to specific functions, tools, options, 

displays, and representations presented by the RAPTOR interface.  The purpose of this 

questionnaire is to ensure proper levels of knowledge required for the successful 

operation of the interface are achieved prior to the conduct of the experimental trials.  

Please read each question carefully, then circle the letter that corresponds to the  

correct answer. 

1.  Alternate courses of action (COA) can be previewed by: 

     A.  Clicking and dragging synchronization points in the map display 

     B.  Clicking and dragging synchronization points in the synchronization matrix 

     C.  Placing the cursor over a desired COA button located under the synchronization 

matrix 

     D.  All of the above 

2.  BN level resource color statuses can be determined by: 

     A. Requesting a SITREP from subordinate units 

     B.  Referencing the individual resource bars located in BN level resource chart 

     C. Both A & B 

     D. None the above 

3.  PLT level resource color statuses can be determined by: 

     A.  Selecting a desired PLT bubble in the Unit Control Tree, then referencing the 

individual resource bars located in PLT level resource chart 

     B.  Requesting a SITREP from subordinate units  

     C.  PLT level resources statuses cannot be determined 

     D.  None of the above 

4.  Alternate COAs can be executed by: 

     A.  Pointing and clicking on a desired COA button, then pointing and clicking on the 

current COA selection button  

     B.  Clicking, dragging, and releasing icons in the map display 

     C.  Clicking and dragging the control slider located above the synchronization matrix 



     D.  All of the above 

5.  The following graphic control measure represents: 

 

      A.  Support by fire  

      B.  Attack by fire 

      C.  Breach 

      D.  None of the above 

6.  The following graphic control measure represents: 

 

     A.  Breach 

     B.  Direction of attack 

     C.  Blocking position 

     D.  None of the above 

7.  The following graphic control measure represents: 

 

     A.  Attack by fire 

     B.  Breach 

     C.  Support by fire 

     D.  None of the above 

8.  The following graphic control measure represents: 
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      A.  Coordination point 

      B.  Decision Point 

      C.  Check point 

      D.  None of the above 

9.  The enemy resource chart provides information for: 

      A.  Quantities of identified (alive/known) enemy equipment 

      B.  Quantities of destroyed enemy equipment 

      C.  Quantities of templated (anticipated) enemy equipment 

      D.  All of the above  

10. Follow-on / next tasks to be executed by subordinate units can be anticipated by 

referencing text cells to the right of those cells currently intersected by the blue 

timeline in the synchronization matrix  

        True  /  False   (Circle One) 

11.  Current force ratios can be determined by: 

        A.  Calculating the number of remaining enemy and friendly vehicles 

        B.  Referencing where the reflecting line intersects the right edge of a display grid in 

the force ratio display 

        C.  Force ratios cannot be determined  

        D.  None of the above 

12.  The below icons represent: 

 

       A.  Mortar System / Howitzer 

       B.  Tank / Infantry Fighting Vehicle  

       C.  Anti-Tank Rocket Launcher / Building 

       D.  None of the above 
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13.  The below icons represent: 

 

        A.  Mortar System / Anti-Tank Rocket Launcher (RPG) 

        B.   Howitzer / Anti-Aircraft Gun 

        C.  Tank / HMMWV 

        D.  None of the above 

14.  The below icon with a red diamond background represents: 

 

        A.  Unknown Wheeled Vehicle 

        B.  Infantry Fighting Vehicle 

        C.  VBIED 

        D.  None of the above 
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APPENDIX E. BASELINE POST-TRAINING TEST 

Directions:  The following questions pertain to specific functions, tools, options, menus, 

and representations presented by the Baseline interface.  The purpose of this 

questionnaire is to ensure proper levels of knowledge required for the successful 

operation of the interface are achieved prior to the conduct of the experimental trials.  

Please read each question carefully, then circle the letter that corresponds to the  

correct answer. 

1.  Reports can be accessed by: 

     A.  Selecting the Applications button 

     B.  Selecting the CMD Directives button 

     C.  Selecting the FIPR button 

     D.  All of the above 

2.  Types and quantities of destroyed enemy vehicles can be determined by:  

     A.  Accessing SPOT reports in the FIPR menu 

     B.  Requesting a SITREP from subordinate units 

     C.  Accessing enemy battle damage assessment reports (E-BDA) in the FIPR menu 

     D.  None of the above 

3.  Subordinate unit resource statuses (e.g., fuel, ammunition, etc.) can be determined by: 

     A. Referencing unit icon color codes in the map display 

     B. Accessing logistical reports (LOGSTAT) located under the Routine tab in the  

FIPR menu 

     C.  Requesting a SITREP from subordinate units 

     D. All the above 

4.  TF COAs can be changed by: 

     A. Clicking a desired course of action (COA) radio button in the Command Directives 

menu, then clicking the execute button 

     B.  Clicking, dragging, and releasing combat resource icons in the map display 

     C.  Developing and sending fragmentary orders (FRAGO) in the FIPR menu 

     D.  All of the above 



5.  Approximate the TF Level fuel status by percentage and color convention using the 

following data (TF full authorized UBL for Fuel = 14,676 Gal): 

 

TM A current fuel status = 3,540 Gal 

TM B current fuel status = 4,500 Gal 

TM C current fuel status = 2,580 Gal 

TM D current fuel status = 1,620 Gal 

Mortars current fuel status = 280 Gal 

Scouts current fuel status = 100 Gal 

      A.  75% / Amber 

      B.  68% / Red 

      C.  86% / Green 

      D.  None of the above 

6.  The following graphic control measure represents: 

 

     A.  Support by fire  

     B.  Attack by fire 

     C.  Breach 

     D.  None of the above 

7.  The following graphic control measure represents: 

 

     A.  Breach 

     B.  Direction of attack 

     C.  Blocking position 

     D.  None of the above 
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8.  The following graphic control measure represents: 

 

      A.  Attack by fire 

      B.  Breach 

      C.  Support by fire 

      D.  None of the above 

9.  The following graphic control measure represents: 

 

       A.  Coordination point 

       B.  Decision Point 

       C.  Check point 

       D.  None of the above 

10.  Calculate the friendly to enemy force ratio (ex. 3:1) using the following data: 

 

 Remaining friendly vehicle strength – 24 x Tanks; 20 x BFVs 

 Remaining known / alive enemy vehicle strength – 1 x T-72; 6 x BMPs 

 Unidentified, but anticipated (i.e., template) additional enemy vehicles –  

1 x T-72s; 3 x BMPs 

       A.  5:1 

       B.  2:1 

       C.  4:1 

       D.  None of the above 

11.  Current TF combat power (i.e., SLANT) can be determined by: 

       A.  Requesting a SITREP from subordinate units 
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       B.  Accessing each subordinate unit’s most current logistical report (LOGSTAT) in 

the FIPR menu, then calculating the quantities of operational vehicles by type 

       C.  TF combat power cannot be determined 

       D.  None of the above 

12.  The below icons represent: 

 

       A.  Mortar System / Howitzer 

       B.  Tank / Infantry Fighting Vehicle  

       C.  Anti-Tank Rocket Launcher / Building 

       D.  None of the above 

13.  The below icons represent: 

 

        A.  Mortar System / Anti-Tank Rocket Launcher (RPG) 

        B.  Howitzer / Anti-Aircraft Gun 

        C.  Tank / HMMWV 

        D.  None of the above 

14.  The below icon with red diamond background represents: 

 

        A.  Unknown Wheeled Vehicle 

        B.  Infantry Fighting Vehicle 

        C.  VBIED 

        D.  None of the above 
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APPENDIX F. RAPTOR STUDY FEEDBACK SURVEY 

Directions:  The following statements concern your perceptions about the 

different displays, options, tools, etc provided by the RAPTOR interface.  Please rate the 

strength of your agreement for each statement below by placing a check mark next to the 

applicable number on the scale.  Please provide any additional comments that will assist 

researchers in determining the overall ability of RAPTOR’s interface design to 

effectively assist user’s as they execute the C2 of tactical operations. 

 

1. The individual resource bar chart color codes used in the Friendly Resource Display 

enables rapid comprehension of unit combat effectiveness: 

 

 
 

2. The Force Ratio Display facilitates decision-making by enabling users to quickly 

determine which force (friendly or enemy) has a superior advantage: 

 

 
 

3. The Control Tree enables users to quickly determine friendly resource statuses at finer 

or courser levels of detail (e.g., Platoon level status vs. Battalion level status): 
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4. The course of action (COA) buttons assists with decision-making by enabling users to 

rapidly access and view alternate actions friendly forces can execute if required: 

 

 
 

5. Information provided in the Synchronization Matrix enables users to anticipate future 

friendly force activities by time, phase, and event: 

 

 
 

6. The Enemy Resource Chart reduces uncertainty by enabling users to quickly determine 

enemy strength and combat effectiveness: 

 

 
 

7. Other observations concerning the effectiveness or usefulness of any of the interface 

displays, tools, options, etc. that enable, assist, or impede the user’s ability to conduct C2:  
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APPENDIX G. BASELINE USER IMPROMPTU AIDS 
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